Протоны и нейтроны это

Из курса химии средней школы вы знаете, что атом состоит из ядра и электронной оболочки. Ядро состоит из нуклонов — протонов и нейтронов, электронная оболочка — из электронов. Эти частицы называются элементарными.

В целом атом электронейтрален, так как заряды ядра и электронной оболочки компенсируют друг друга: число протонов в ядре равно числу электронов в электронной оболочке.

Таблица 1. Основные характеристики элементарных частиц

* Величина заряда электрона и протона равна `1,60*10^(-19)` Кл.

Масса атома в основном сосредоточена в ядре и определяется суммой масс протонов и нейтронов, т. к. электроны из-за своей малой массы на эту величину практически не влияют.

Сумма масс протонов и нейтронов называется массовым числом. При обозначении элемента она ставится как левый верхний индекс: $ <>_<>^mathrm$.

Заряд ядра

важнейшая характеристика атома, лежащая в основе его современного определения.

В Периодической системе Д.И. Менделеева порядковый номер элемента определяется именно зарядом ядра.

При обозначении элемента он ставится как левый нижний индекс.

Изотопы

Атомы с одинаковым зарядом ядра могут иметь разное количество нейтронов, то есть разные массы. Разновидности атомов одного и того же химического элемента, имеющие одинаковый заряд ядра, но разные массы, называют изотопами.

Изотопы одного и того же элемента имеют одинаковые химические свойства, так как масса атома не играет существенной роли непосредственно в формировании этих свойств.

Характеристика элементарных частиц

Из таблички видно, что вся масса атома сосредоточена в протонах и нейтронах, то есть в ядре. При этом само ядро положительно заряжено, а вокруг ядра вращаются отрицательно заряженные электроны.

В разновидностях одного и того же химического элемента может быть различное число элементарных частиц. Давай рассмотрим это на примере атома водорода.

Первый случай: ядро атома водорода состоит из одного протона (масса ядра = 1 а.е.м.). Такой атом называется протием, именно он указан в периодической системе Д.И. Менделеева.

Добавим к этому ядру один нейтрон, тогда масса ядра будет равна 2 а.е.м.. Мы получили вторую разновидность атома водорода — дейтерий.

Если добавить второй нейтрон к такому ядру, то мы получим тритий. Так вот, разновидности одного и того же химического элемента, которые различаются числом нейтронов в ядре, называются изотопами.

Как определить количество элементарных частиц

Сейчас мы научимся определять количество протонов, нейтронов и электронов в атоме любого химического элемента. В этом нам поможет периодическая система Д.И. Менделеева.

Стареют ли протоны, электроны и нейтроны?

Давай рассмотрим ячейку в периодической системе с углеродом:

В верхней части ячейки располагается порядковый номер элемента (это целое число), под ним располагается относительная атомная масса. Она является нецелым числом, поэтому её легко определять. Относительная атомная масса, округленная до целого числа, называется массовым числом.

Эти характеристики связаны с количеством элементарных частиц в атоме следующим образом:

(№ элемента = p = Z = ē)

Число нейтронов = массовое число – порядковый номер

Давай рассмотрим основные определения и положения, связанные с характеристикой элемента и числовыми операциями:

  • Орбиты, на которых располагаются электроны, называются электронными слоями (или энергетическими уровнями). Нумерация слоев начинается с ближайшего к ядру электронного слоя.
  • На каждом электронном слое может находиться не более 2N2 электронов (где N — номер слоя).
  • Число занятых электронами слоев в атоме элемента совпадает с номером периода, в котором он находится.
  • Последний энергетический уровень называют внешним (максимальное число ē на внешнем уровне = 8). Обычно на нем находятся валентные электроны, то есть электроны на внешней (валентной) оболочке атома.
  • Число валентных электронов, как правило, совпадает с номером группы, в котором находится элемент.

На примере атома углерода определим количество элементарных частиц в его атоме.

Порядковый номер углерода равен 6, значит, заряд его атома + 6, число протонов и число электронов совпадает и тоже равно 6.

Относительная атомная масса равна 12,01, а число нейтронов равно 12 – 6 = 6.

Углерод находится во втором периоде, IV группе. Это показывает нам, что занято лишь 2 электронных слоя, при этом на внешнем электронном уровне располагаются 4 электрона.

“Грустный” и “веселый” атом

При заполнении электронами ячеек мы описываем так называемое основное состояние. Это такое состояние атома, при котором энергия системы минимальна. Его состояние можно определить как “веселое”: в атоме всё спокойно и в порядке.

Но может быть и другая ситуация, когда на электроны оказывается какое-то воздействие. Тогда происходит процесс, похожий на развод пары в человеческом мире. В результате воздействия те электроны, которые находились на орбитали вдвоем и были спаренными, могут друг с другом “поссориться” и “разъехаться” по разным орбиталям.

Тогда атом можно определить как “грустный”: электроны ссорятся, атома грустит. В химии это состояние и называется возбужденным. Такой “развод” возможен только в пределах одного энергетического уровня.

Атомные подуровни заполняются электронами в порядке увеличения их энергии. Этот порядок выглядит следующим образом:

1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → …

Масса протона и масса нейтрона

Поскольку массы протона и нейтрона так похожи, и поскольку протон и нейтрон отличаются только заменой верхнего кварка нижним, кажется вероятным, что их массы обеспечиваются одним и тем же способом, исходят из одного источника, и их разница заключается в небольшом отличии между верхним и нижним кварками. Но три приведённых рисунка говорят о наличии трёх очень разных взглядов на происхождение массы протона.

Рис. 1 говорит о том, что верхний и нижний кварки просто составляют по 1/3 от массы протона и нейтрона: порядка 0,313 ГэВ/с 2 , или из-за энергии, необходимой для удержания кварков в протоне. И поскольку разница между массами протона и нейтрона составляет долю процента, разница между массами верхнего и нижнего кварка тоже должна составлять долю процента.

Рис. 2 менее понятен. Какая часть массы протона существует благодаря глюонам? Но, в принципе, из рисунка следует, что большая часть массы протона всё равно происходит от массы кварков, как на рис. 1.

Рис. 3 отражает более тонкий подход к тому, как на самом деле появляется масса протона (как мы можем проверить напрямую через компьютерные вычисления протона, и не напрямую с использованием других математических методов). Он сильно отличается от идей, представленных на рис. 1 и 2, и оказывается не таким простым.

Чтобы понять, как это работает, нужно думать не в терминах массы m протона, но в терминах его энергии массы E = mc 2 , энергии, связанной с массой. Концептуально правильным вопросом будет не «откуда взялась масса протона m», после которого вы можете подсчитать E, умножив m на c 2 , а наоборот: «откуда берётся энергия массы протона E», после которого можно подсчитать массу m, разделив E на c 2 .

Полезно классифицировать взносы в энергию массы протона по трём группам:

А) Энергия массы (энергия покоя) содержащихся в нём кварков и антикварков (глюоны, безмассовые частицы, никакого вклада не делают).
Б) Энергия движения (кинетическая энергия) кварков, антикварков и глюонов.
В) Энергия взаимодействия (энергия связи или потенциальная энергия), хранящаяся в сильном ядерном взаимодействии (точнее, в глюонных полях), удерживающих протон.

Рис. 3 говорит о том, что частицы внутри протона двигаются с большой скоростью, и что в нём полно безмассовых глюонов, поэтому вклад Б) больше А). Обычно, в большинстве физических систем Б) и В) оказываются сравнимыми, при этом В) часто отрицательно. Так что энергия массы протона (и нейтрона) в основном получается из комбинации Б) и В), а А) вносит малую долю. Поэтому массы протона и нейтрона появляются в основном не из-за масс содержащихся в них частиц, а из-за энергий движения этих частиц и энергии их взаимодействия, связанной с глюонными полями, порождающими силы, удерживающие протон. В большинстве других знакомых нам систем баланс энергий распределён по-другому. К примеру, в атомах и в Солнечной системе доминирует А), а Б) и В) получаются гораздо меньше, и сравнимы по величине.

Подводя итоги, укажем, что:

  • Рис. 1 предполагает, что энергия массы протона происходит из вклада А).
  • Рис. 2 предполагает, что важны оба вклада А) и В), и немного своей доли вносит Б).
  • Рис. 3 предполагает, что важны Б) и В), а вклад А) оказывается незначительным.

Если рис. 3 не врёт, массы кварка и антикварка очень малы. Какие они на самом деле? Масса верхнего кварка (как и антикварка) не превышает 0,005 ГэВ/с 2 , что гораздо меньше, чем 0,313 ГэВ/с 2 , который следует из рис. 1. (Массу верхнего кварка тяжело измерить, и это значение меняется из-за тонких эффектов, так что она может оказаться гораздо меньшей, чем 0,005 ГэВ/с 2 ). Масса нижнего кварка примерно на 0,004 ГэВ/с 2 больше массы верхнего. Это значит, что масса любого кварка или антикварка не превышает одного процента массы протона.

Обратите внимание, что это означает (противореча рис. 1), что отношение массы нижнего кварка к верхнему не приближается к единице! Масса нижнего кварка как минимум в два раза превышает массу верхнего. Причина того, что массы нейтрона и протона так похожи, не в том, что похожи массы верхнего и нижнего кварков, а в том, что массы верхнего и нижнего кварков очень малы – и разница между ними мала, по отношению к массам протона и нейтрона. Вспомните, что для превращения протона в нейтрон, вам нужно просто заменить один из его верхних кварков на нижний (рис. 3). Этой замены достаточно для того, чтобы сделать нейтрон немного тяжелее протона, и поменять его заряд с +е на 0.

Кстати, тот факт, что различные частицы внутри протона сталкиваются друг с другом, и постоянно появляются и исчезают, не влияет на обсуждаемые нами вещи – энергия сохраняется в любом столкновении. Энергия массы и энергия движения кварков и глюонов может меняться, как и энергия их взаимодействия, но общая энергия протона не меняется, хотя всё внутри него постоянно меняется. Так что масса протона остаётся постоянной, несмотря на его внутренний вихрь.

На этом моменте можно остановиться и впитать полученную информацию. Поразительно! Практически вся масса, содержащаяся в обычной материи, происходит из массы нуклонов в атомах. И большая часть этой массы происходит из хаоса, присущего протону и нейтрону – из энергии движения кварков, глюонов и антикварков в нуклонах, и из энергии работы сильных ядерных взаимодействий, удерживающих нуклон в целом состоянии. Да: наша планета, наши тела, наше дыхание являются результатом такого тихого, и, до недавнего времени, невообразимого столпотворения.

  • Научно-популярное
  • Физика

Электроны

Частицы, которые вращаются в облачном пространстве вокруг ядра, настолько малы, что их размеры смогла установить только лишь квантовая механика. Ученые доказали, что электроны фундаментальные частицы, их состав в атоме может меняться. Тогда атом становится несбалансированным, меняет заряд. Если заряд становится положительным, то атом называют катионом, если отрицательным, то анионом.

На изменение свойств атома влияет излучение энергии. Этот процесс называют ионизирующим излучением.

Мельчайшие частицы атома: основа электротока

Взаимодействие частиц объясняет механизм электрического тока. Он представляет собой поток электронов, проходящих через вещества проводники.

Поток возможен, когда электроны разрывают атомную связь. Разрыв происходит под воздействием энергии, она дает возможность электрону преодолеть электромагнитные силы, которые его сдерживают. В материалах, относящихся к проводникам, электроны имеют свободную связь с ядрами, поэтому требуется минимальное количество энергии для их движения.

Потоки электронов можно генерировать с помощью специальных устройств, генераторов, работающих на основе принципа электромагнитной индукции. Также процесс генерации возможен под воздействием химических реакций и световой энергии.

  • Винипласт
  • Гетинакс
  • Доставка товаров из Китая
  • Изолента
  • Изофлекс 191
  • Капролон
  • КИФЭ слюдопласт
  • Лак МЛ-92
  • Лакоткань
  • Лауретсульфат натрия (SLES 70%)
  • Лента киперная
  • Лента ЛСКЛ-155
  • Лента ЛЭТСАР
  • Лента слюдинитовая
  • Лента смоляная
  • Лента стеклобандажная ЛСБЭ
  • Лента стеклянная ЛЭС
  • Лента тафтяная
  • Лента ФУМ
  • Миканиты
  • Оргстекло
  • Пластикат 57-40
  • Пленка полиимидная ПМ-А
  • Пленка ПЭТ-Э
  • Пленкосинтокартон ПСК
  • Пленкоэлектрокартон ПЭК
  • Полиацеталь ПОМ
  • Полиуретан
  • Полиэтилен PE-1000
  • Провод БПВЛ
  • Провод ПВ-3 (ПУГВ)
  • Стеклолакоткань
  • Стекломиканит гибкий
  • Стеклопластик UPM-203 (полный аналог Durostone)
  • Стеклотекстолит
  • Стеклотекстолит фольгированный FR-4
  • Стеклоткань
  • Текстолит
  • Трубка ТВ-40
  • Трубка ТКР
  • Трубка ТЛВ
  • Трубка ТУТ
  • Трубка фторопластовая Ф-4Д
  • Фторолакоткань Ф-4Д
  • Фторопласт
  • Шнуры электроизоляционные
  • Электрокартон
  • Эмалированный провод
  • Эмаль ГФ-92 ХС

Химические элементы

Химический элемент — совокупность атомов с одним и тем же зарядом ядра, числом протонов в ядре и электронов в электронной оболочке. Закономерную связь химических элементов отражает периодическая таблица Д.И. Менделеева.

Химический элемент

  • Обозначение химического элемента
  • Русское наименование
  • Порядковый номер = заряд атома = число электронов = число протонов
  • Атомная масса
  • Распределение электронов по энергетическим уровням
  • Электронная конфигурация внешнего уровня

Надо заметить, что на экзамене часто из карточки элемента скрывают распределение электронов и конфигурацию внешнего уровня. Тем не менее, если вы успешно освоили предыдущую тему, то для вас не составит труда написать электронную конфигурацию атома зная его порядковый номер в таблице Д.И. Менделеева (номер уж точно не тронут!))

Протоны, нейтроны и электроны

Вы уже знаете, что порядковый номер элемента в периодической таблице Д.И. Менделеева равен числу протонов, а число протонов равно числу электронов.

Протоны, нейтроны и электроны

Для того чтобы найти число нейтронов в атоме алюминия, необходимо вычесть из атомной массы число протонов:

Получается, что в атоме алюминия 14 нейтронов. Посчитайте число нейтронов, электронов и протонов самостоятельно для атомов бериллия, кислорода, меди. Решение вы найдете ниже.

Протоны, нейтроны и электроны

Если вы поняли суть и научились считать протоны, нейтроны и электроны, самое время приступать к следующей теме.

Изотопы

Изотопы (греч. isos — одинаковый + topos — место) — общее название разновидностей одного и того же химического элемента, имеющих одинаковый заряд ядра (число протонов), но разное число нейтронов.

Вероятно, вы не задумывались, но вся таблица Д.И. Менделеева и представленные в ней химические элементы — это самые распространенные на земле изотопы.

Лучше всего объяснить, что такое изотопы наглядным примером. Широко известны три изотопа водорода: протий, дейтерий и тритий.

Изотопы водорода

В таблице Д.И. Менделеева представлен самый распространенный из трех — протий. Он содержит 1 протон и 1 электрон, нейтроны отсутствуют. У дейтерия 1 протон, 1 нейтрон и 1 электрон. У трития 1 протон, 2 нейтрона, 1 электрон.

Теперь очевидно, что изотопы — атомы одного и того же химического элемента, различающиеся числом нейтронов.

Рассмотрим пример с изотопами лития. Самостоятельно посчитайте количество нейтронов у каждого изотопа. Найдите тот, который включен в таблицу Д.И. Менделеева.

Изотопы лития

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Блиц-опрос по теме Химические элементы

Электроны вокруг ядра атома

Электроны имеют свои специфические орбиты, а именно: S, P, D, F, а затем G. Каждая орбита представляет собой сферическую оболочку, и имена выводятся из спектра испускаемого света из этих оболочек, описывающих характер спектральных линий. Другой факт об электронах заключается в том, что они находятся везде, что позволяют квантовые законы.

В атоме углерода, например, шесть электронов. Два из них занимают сферическую оболочку в центре атома, а остальные четыре распределены в смеси сферических оболочек и трехлопастных оболочек. Таким образом, ядро ​​окружено чем-то вроде облаков отрицательного заряда, а электроны находятся везде, где только могут быть, но не заполняют пустые пространства. Электроны помогают создавать молекулы.

Электронные связи между атомами

Если два атома углерода подходят достаточно близко, их ближайшие электроны взаимодействуют и образуют одинарную связь. Эта связь в химии называется сигма-связью. Затем облака изгибаются и соединяются, создавая «Пи-связь», которая выглядит как деревья, соединяющие верхние ветви над улицей.

Связи становятся все более и более сложными в различных ситуациях, и это выходит за рамки данной статьи. Тем не менее одна вещь остается постоянной во всех этих связях: электроны все еще рассеяны в относительно огромном облаке вокруг очень плотного ядра, и там все еще много пустого пространства. Электрические поля и электронные облака удерживают эту огромную пустоту вместе. Что же тогда находится внутри ядра атома?

Задача 1

Взяли две пары маленьких незаряженных шариков. В первой паре от атомов одного шарика «оторвали» 100 электронов и «посадили» их на второй шарик. Во второй паре то же самое сделали с тысячей электронов. Потом шарики в каждой паре разнесли на одно и то же довольно большое расстояние. (Пары далеко друг от друга, гораздо дальше, чем шарики в каждой паре.) Будут ли шарики каждой пары притягиваться или отталкиваться? В какой паре сила их взаимодействия больше и во сколько раз?

Шарики каждой пары притягиваются, во второй паре притяжение сильнее в 100 раз. Действительно, во втором случае «без электрона» осталось 1000 протонов, в 10 раз больше, чем в первом. Они притягивают каждый «убежавший» электрон в 10 раз сильнее. Но и «убежавших» электронов во втором случае в 10 раз больше! Значит, суммарная действующая на них сила отличается в 100 раз.

Заметим, что остальные, «неразлучённые» протоны и электроны тоже притягивают или отталкивают каждую заряженную частицу, но их действие скомпенсировано: с какой силой протон притягивает, с такой же электрон рядом с ним отталкивает, или наоборот.

Электрическое притяжение к протонам и держит электроны в атоме, не даёт им улететь. Как мы вскоре убедимся, оно же скрепляет атомы в молекулы. Но не только! Оно же заставляет молекулы одних тел действовать на молекулы других. Если не считать силы гравитационного притяжения, с которой все мы знакомимся с детства (глядя, как падают на пол выпущенные из руки игрушки), все остальные наблюдаемые нами физические явления вызваны как раз электрической силой. Упругость пружины, трение, прилипание разных вещей друг к другу или, наоборот, их взаимное отталкивание — за всё это отвечает взаимодействие электронов одних атомов с ядрами и электронами других.

Но вернёмся к нашим атомам. В нормальной ситуации атом электронейтрален, то есть не имеет заряда: у него электронов столько, сколько протонов в ядре. Если это не так (например, кто-то похитил у атома электрон или атом где-то захватил себе чужой), такой «калечный» атом называется ионом. Тогда он заряжен — положительно, если электронов не хватает, и отрицательно, если есть лишние.

Рисунок Марии Усеиновой («Квантик» №11, 2018)

Протоны притягивают к себе электроны и заставляют их вертеться вокруг ядра, не улетая далеко. А нейтроны в электрическом взаимодействии не участвуют. Зачем же они тогда нужны? Затем, чтобы «склеивать» протоны в ядре — ведь протоны отталкиваются друг от друга электрическими силами, и без нейтронов они бы разлетелись в разные стороны! Силы, которыми нейтроны удерживают протоны вместе, — уже не электрические. Они действуют только на очень маленьких расстояниях — внутри ядра 3 .

Теперь можно догадаться, чем отличаются друг от друга разные сорта атомов: у них разное количество электронов. И, соответственно, протонов в ядре. Номер элемента в таблице Менделеева (число, написанное крупно в правом верхнем углу каждой клетки) — это число протонов в атомах этого элемента. А как узнать количество нейтронов? По массе атома, ведь массы протонов и нейтронов равны! Например, в атоме водорода — самом маленьком и самом лёгком — всего один протон. А в ядре атома гелия два протона, и при этом атом гелия в 4 раза тяжелее атома водорода. Электроны не в счёт — значит, в ядре гелия 2 нейтрона!

Рисунок Марии Усеиновой («Квантик» №11, 2018)

Масса атома — в единицах массы водорода — написана в каждой клетке внизу 4 . Легко убедиться, что у нетяжёлых атомов нейтронов примерно столько же, сколько протонов. А у тяжёлых — нейтронов больше: всё труднее становится удерживать всю эту громоздкую конструкцию.

Таблица Менделеева («Квантик» №10, 2018)

Но почему эта масса нецелая? Не может же, например, у хлора быть 18 с половиной нейтронов? Конечно, нет. Просто это значит, что в природе бывают атомы с 17 электронами, 17 протонами и 18 нейтронами, а бывают такие, у которых электронов и протонов столько же, а число нейтронов отличается. И те и другие — атомы хлора, ведь электронов и протонов столько же. Такие «подвиды» атомов одного вида называют изотопами. В таблице Менделеева написана средняя масса атомов каждого вида (с учётом распространённости их изотопов).

В большинстве клеток средняя масса близка к целому числу. Это значит, что, как правило, в природе больше всего какого-то одного изотопа атомов каждого вида, а атомы с другим количеством нейтронов встречаются не так уж часто. Почти всегда можно не обращать на них внимания и округлять массу до ближайшего целого числа.

Когда хотят уточнить, какой именно изотоп имеется в виду, заряд ядра и его массу пишут прямо рядом с названием элемента: например, (<>^_mathrm) — обычный водород; (<>^_mathrm) — тяжёлый водород, он же дейтерий; (<>^_mathrm) — сверхтяжёлый водород, тритий.

Ну-ка, проверим — всё ли понятно?

Задача 2

Сколько у атома (<>^_mathrm) электронов, протонов и нейтронов? А у атома (<>^_mathrm)? А у атома (<>^_mathrm)? У каких атомов 30 нейтронов? (Считаем только основные, самые распространённые изотопы каждого элемента.)

(<>^_mathrm) — 6 электронов, 6 протонов, 6 нейтронов; (<>^_mathrm) — 11 электронов, 11 протонов, 23−11 = 12 нейтронов; (<>^_mathrm) — 79 электронов, 79 протонов, 197−79 = 118 нейтронов; у марганца (<>^_mathrm) и железа (<>^_mathrm).

Задача 3

Если 1 кг воды «расщепить» на кислород и водород, сколько получится граммов газа кислорода?

В молекуле воды на каждый атом кислорода приходится 2 атома водорода. Но в атоме кислорода 8 протонов + 8 нейтронов, он весит в 16:2 = 8 раз больше, чем оба эти атома водорода, вместе взятые (в них ведь всего по одному протону). Значит, на атомы кислорода приходится 8/9 всей массы воды. Когда атомы кислорода «отцепятся» от атомов водорода и «слепятся» по два в молекулы кислорода О2, их суммарная масса останется прежней: 8/9 кг.

Задача 4

Во что превратится атом кислорода (<>^_mathrm), если добавить в его ядро один нейтрон? А если убрать один протон?

Если добавить нейтрон, получится тяжёлый изотоп кислорода, (<>^_mathrm). А вот если убрать один протон, получится 7 протонов в ядре — это уже не кислород, а азот, хотя и тяжёлый его изотоп (<>^_mathrm). Если при этом ни один электрон не улетит, это будет к тому же отрицательно заряженный ион: электронов больше, чем протонов. Впрочем, появление нового или потеря одного из имеющихся электронов случается с атомами гораздо чаще, чем изменение состава ядра.

Задача 5

У хлора два распространённых изотопа. Более редкий из них имеет 20 нейтронов. Во сколько раз изотопов хлора-37 в природе меньше, чем изотопов хлора-35?

Если бы был только изотоп (<>^_mathrm), масса всех атомов составляла бы 35 масс протона (или нейтрона). В среднем, как мы видели из таблицы Менделеева, на каждый атом хлора приходится примерно 35,5, то есть 0,5 «лишних» нейтрона. А в каждом атоме тяжёлого изотопа (<>^_mathrm) два лишних нейтрона. Значит, чтобы в среднем была половина, тяжёлым должен быть каждый четвёртый атом.

(Более аккуратный подсчёт по указанному в таблице значению средней массы, (35,45−35):2 = 0,225, не даёт более точной оценки — ведь есть ещё другие изотопы хлора. Хоть их и совсем мало, но точнее сосчитать они помешают.)

Итак, изотоп (<>^_mathrm) составляет около 1/4 всего имеющегося в природе хлора, а (<>^_mathrm) — остальные 3/4. Поэтому изотопа (<>^_mathrm) в 3 раза меньше.

Контрольная задача

Есть 3 списка: 1) азот, никель, алюминий, железо, медь, гелий; 2) вода, метан, поваренная соль, спирт, сахар, аспирин; 3) дерево, воздух, бумага, нефть, водка, гранит. Что общего в материалах внутри каждого списка и в чём отличие списков друг от друга? По какому принципу собраны эти списки?

В первом списке молекулы состоят из одинаковых атомов (атомов только одного вида); во втором — каждая молекула состоит из разных атомов, но все молекулы одинаковы. В третьем — вещества состоят из смеси молекул разных видов.

Рисунок Марии Усеиновой («Квантик» №11, 2018)

Художник Мария Усеинова

1 А разобрались ли вы? Для проверки и чтобы понять, как непросто было до всего этого догадаться, предлагаем вам решить «контрольную задачу» в конце статьи.

2 Вообще-то, когда договаривались, про электроны и протоны ещё ничего не знали — это было лет за 150 до их открытия. Тогда положительным назвали заряд, который получается на стекле, если его потереть шёлковой тряпочкой. Теперь мы знаем, что электроны со стекла «убегают» на шёлк.

3 Зато на этих маленьких расстояниях они очень большие — надо ведь «победить» электрическое отталкивание! Поэтому они так и называются — «сильные силы» (strong force), сильное взаимодействие.

4 Тут мы чуть-чуть обманываем читателя, но это не беда: дальше придётся обманывать ещё сильнее.

Оцените статью
TutShema
Добавить комментарий