Последовательный порт тип разъема

Практически каждый компьютер оборудован хотя бы одним последовательным асинхронным адаптером. Обычно он представляет собой отдельную плату или же расположен прямо на материнской плате компьютера. Его называют еще асинхронным адаптером RS-232-C, или портом RS-232-C. Каждый асинхронный адаптер обычно содержит несколько портов RS-232-C, через которые к компьютеру можно подключать внешние устройства. Каждому такому порту соответствует несколько регистров, через которые программа получает к нему доступ, и определенная линия IRQ для сигнализирования компьютеру об изменении состояния порта. При выполнении BIOS процедуры начальной загрузки каждому порту RS-232-C присваивается логическое имя COM1 — COM4 (COM-порт номер 1 — 4).

Интерфейс RS-232-C разработан ассоциацией электронной промышленности (Electronic Industries Association — EIA) как стандарт для соединения компьютеров и различных последовательных периферийных устройств. Компьютер IBM PC поддерживает интерфейс RS-232-C не в полной мере скорее разъем, обозначенный на корпусе компьютера как порт последовательной передачи данных, содержит некоторые из сигналов, входящих в интерфейс RS-232-C и имеющих соответствующие этому стандарту уровни напряжения. В настоящее время порт последовательной передачи данных используется очень широко. Вот далеко не полный список применений:

Основные понятия и термины

Последовательная передача данных означает, что данные передаются по единственной линии. При этом биты байта данных передаются по очереди с использованием одного провода. Для синхронизации группе битов данных обычно предшествует специальный стартовый бит, после группы битов следуют бит проверки на четность и один или два стоповых бита. Иногда бит проверки на четность может отсутствовать. Сказанное иллюстрируется следующим рисунком:

Из рисунка видно, что исходное состояние линии последовательной передачи данных — уровень логической 1. Это состояние линии называют отмеченным — MARK. Когда начинается передача данных, уровень линии переходит в 0. Это состояние линии называют пустым — SPACE. Если линия находится в таком состоянии больше определенного времени, считается, что линия перешла в состояние разрыва связи — BREAK. Стартовый бит START сигнализирует о начале передачи данных. Далее передаются биты данных, вначале младшие, затем старшие.

Если используется бит четности P, то передается и он. Бит четности имеет такое значение, чтобы в пакете битов общее количество единиц (или нулей) было четно или нечетно, в зависимости от установки регистров порта. Этот бит служит для обнаружения ошибок, которые могут возникнуть при передаче данных из-за помех на линии. Приемное устройство заново вычисляет четность данных и сравнивает результат с принятым битом четности. Если четность не совпала, то считается, что данные переданы с ошибкой. Конечно, такой алгоритм не дает стопроцентной гарантии обнаружения ошибок. Так, если при передаче данных изменилось четное число битов, то четность сохраняется и ошибка не будет обнаружена. Поэтому на практике применяют более сложные методы обнаружения ошибок.

Уроки Arduino #2 — работа с монитором COM порта

В самом конце передаются один или два стоповых бита STOP, завершающих передачу байта. Затем до прихода следующего стартового бита линия снова переходит в состояние MARK. Использование бита четности, стартовых и стоповых битов определяют формат передачи данных. Очевидно, что передатчик и приемник должны использовать один и тот же формат данных, иначе обмен будет невозможен. Другая важная характеристика — скорость передачи данных. Она также должна быть одинаковой для передатчика и приемника.

Скорость передачи данных обычно измеряется в бодах (по фамилии французского изобретателя телеграфного аппарата Emile Baudot — Э. Бодо). Боды определяют количество передаваемых битов в секунду. При этом учитываются и старт/стопные биты, а также бит четности. Иногда используется другой термин — биты в секунду (bps). Здесь имеется в виду эффективная скорость передачи данных, без учета служебных битов.

Аппаратная реализация

Компьютер может быть оснащен одним или двумя портами последовательной передачи данных. Эти порты расположены либо на материнской плате, либо на отдельной плате, вставляемой в слоты расширения материнской платы. Бывают также платы, содержащие четыре или восемь портов последовательной передачи данных. Их часто используют для подключения нескольких компьютеров или терминалов к одному, центральному компьютеру. Эти платы имеют название «мультипорт».

В основе последовательного порта передачи данных лежит микросхема Intel 8250 или ее современные аналоги — Intel 16450, 16550, 16550A. Эта микросхема является универсальным асинхронным приемопередатчиком (UART — Universal Asynchronous Receiver Transmitter). Микросхема содержит несколько внутренних регистров, доступных через команды ввода/вывода. Микросхема 8250 содержит регистры передатчика и приемника данных. При передаче байта он записывается в буферный регистр передатчика, откуда затем переписывается в сдвиговый регистр передатчика. Байт «выдвигается» из сдвигового регистра по битам. Аналогично имеются сдвиговый и буферный регистры приемника.

Программа имеет доступ только к буферным регистрам, копирование информации в сдвиговые регистры и процесс сдвига выполняется микросхемой UART автоматически. Регистры, управляющие асинхронным последовательным портом, будут описаны в следующей главе. К внешним устройствам асинхронный последовательный порт подключается через специальный разъем. Существует два стандарта на разъемы интерфейса RS-232-C, это DB25 и DB9. Первый разъем имеет 25, а второй 9 выводов. Приведем разводку разъема последовательной передачи данных DB25:

Номер контакта Назначение контакта Вход или выход компьютера
1Защитное заземление(Frame Ground, FG)
2Передаваемые данные(Transmitted Data, TD)Выход
3Принимаемые данные(Received Data, RD)Вход
4Запрос для передачи(Request to send, RTS)Выход
5Сброс для передачи(Clear to Send, CTS)Вход
6Готовность данных(Data Set Ready, DSR)Вход
7Сигнальное заземление(Signal Ground, SG)
8Детектор принимаемого с линии сигнала(Data Carrier Detect, DCD)Вход
9-19Не используются
20Готовность выходных данных(Data Terminal Ready, DTR)Выход
21Не используется
22Индикатор вызова(Ring Indicator, RI)Вход
23-25Не используются

Наряду с 25-контактным разъемом часто используется 9-контактный разъем:

Номер контакта Назначение контакта Вход или выход
1Детектор принимаемого с линии сигнала(Data Carrier Detect, DCD)Вход
2Принимаемые данные(Received Data, RD)Вход
3Передаваемые данные(Transmitted Data, TD)Выход
4Готовность выходных данных(Data Terminal Ready, DTR)Выход
5Сигнальное заземление(Signal Ground, SG)
6Готовность данных(Data Set Ready, DSR)Вход
7Запрос для передачи(Request to send, RTS)Выход
8Сброс для передачи(Clear to Send, CTS)Вход
9Индикатор вызова(Ring Indicator, RI)Вход

Только два вывода этих разъемов используются для передачи и приема данных. Остальные передают различные вспомогательные и управляющие сигналы. На практике для подсоединения того или иного устройства может понадобиться различное количество сигналов. Интерфейс RS-232-C определяет обмен между устройствами двух типов: DTE (Data Terminal Equipment — терминальное устройство) и DCE (Data Communication Equipment — устройство связи). В большинстве случаев, но не всегда, компьютер является терминальным устройством. Модемы, принтеры, графопостроители всегда являются устройствами связи. Рассмотрим теперь сигналы интерфейса RS-232-C более подробно.

Сигналы интерфейса RS-232-C

Здесь мы рассмотрим порядок взаимодействия компьютера и модема, а также двух компьютеров непосредственно соединенных друг с другом. Сначала посмотрим, как происходит соединение компьютера с модемом. Входы TD и RD используются устройствами DTE и DCE по-разному. Устройство DTE использует вход TD для передачи данных, а вход RD для приема данных. И наоборот, устройство DCE использует вход TD для приема, а вход RD для передачи данных. Поэтому для соединения терминального устройства и устройства связи выводы их разъемов необходимо соединить напрямую:

Остальные линии при соединении компьютера и модема также должны быть соединены следующим образом:

Рассмотрим процесс подтверждения связи между компьютером и модемом. В начале сеанса связи компьютер должен удостовериться, что модем может произвести вызов (находится в рабочем состоянии). Затем, после вызова абонента, модем должен сообщить компьютеру, что он произвел соединение с удаленной системой. Подробнее это происходит следующим образом. Компьютер подает сигнал по линии DTR, чтобы показать модему, что он готов к проведению сеанса связи. В ответ модем подает сигнал по линии DSR. Когда модем произвел соединение с другим, удаленным модемом, он подает сигнал по линии DCD, чтобы сообщить об этом компьютеру. Если напряжение на линии DTR падает, это сообщает модему, что компьютер не может далее продолжать сеанс связи, например из-за того что выключено питание компьютера. В этом случае модем прервет связь. Если напряжение на линии DCD падает, это сообщает компьютеру, что модем потерял связь и не может больше продолжать соединение. В обоих случаях эти сигналы дают ответ на наличие связи между модемом и компьютером.

Сейчас мы рассмотрели самый низкий уровень управлением связи — подтверждение связи. Существует более высокий уровень, который используется для управления скоростью обмена данными, но он также реализуется аппаратно. Практически управление скоростью обмена данными (управление потоком) необходимо, если производится передача больших объемов данных с высокой скоростью. Когда одна система пытается передать данные с большей скоростью, чем они могут быть обработаны принимающей сиситемой, результатом может стать потеря части передаваемых данных. Чтобы предотвратить передачу большего числа данных, чем то, которое может быть обработано, используют управление связью, называемое «управление потоком» (flow-controll handshake). Стандарт RS-232-C определяет возможность управления потоком только для полудуплексного соединения. Полудуплексным называется соединение, при котором в каждый момент времени данные могут передаваться только в одну сторону. Однако фактически этот механизм используется и для дуплексных соединений, когда данные передаются по линии связи одновременно в двух направлениях.

Управление потоком

В полудуплексных соединениях устройство DTE подает сигнал RTS, когда оно желает передать данные. DCE отвечает сигналом по линии CTS, когда оно готово, и DTE начинает передачу данных. До тех пор, пока оба сигнала RTS и CTS не примут активное состояние, только DCE может передавать данные. При дуплексных соединениях сигналы RTS/CTS имеют противоположные значения по сравнению с теми, которые они имели для полудуплексных соединений. Когда DTE может принять данные, он подает сигнал по линии RTS. Если при этом DCE готово для принятия данных, оно возвращает сигнал CTS. Если напряжение на линиях RTS или CTS падает, то это сообщает передающей системе, что получающая система не готова для приема данных. Ниже мы приводим отрывок диалога между компьютером и модемом, происходящий при обмене данными.

Конечно, все это хорошо звучит. На практике все не так просто. Соединить компьютер и модем не составляет труда, так как интерфейс RS-232-C как раз для этого и предназначен. Но если вы захотите связать вместе два компьютера при помощи такого же кабеля, который вы использовали для связи модема и компьютера, то у вас возникнут проблемы. Для соединения двух терминальных устройств — двух компьютеров — как минимум необходимо перекрестное соединение линий TR и RD:

Однако в большинстве случаев этого недостаточно, так как для устройств DTE и DCE функции, выполняемые линиями DSR, DTR, DCD, CTS и RTS, асимметричны. Устройство DTE подает сигнал DTR и ожидает получения сигналов DSR и DCD. В свою очередь, устройство DCE подает сигналы DSR, DCD и ожидает получения сигнала DTR. Таким образом, если вы соедините вместе два устройства DTE кабелем, который вы использавали для соединения устройств DTE и DCE, то они не смогут договориться друг с другом. Не выполнится процесс подтверждения связи.

Теперь перейдем к сигналам RTS и CTS, управления потоком данных. Иногда для соединения двух устройств DTE эти линии соединяют вместе на каждом конце кабеля. В результате получаем то, что другое устройство всегда готово для получения данных. Поэтому, если при большой скорости передачи принимающее устройство не успевает приинимать и обрабатывать данные, возможна потеря данных. Чтобы решить все эти проблемы для соединеия двух устройств типа DTE используется специальный кабель, в обиходе называемый нуль-модемом. Имея два разъема и кабель, вы легко можете спаять его самостоятельно, руководствуясь следующими схемами.

Для полноты картины рассмотрим еще один аспект, связанный с механическим соединением портов RS-232-C. Из-за наличия двух типов разъемов — DB25 и DB9 — часто бывают нужны переходники с одного типа разъемов на другой. Например, вы можете использовать такой переходник для соединения COM-порта компьютера и кабеля нуль-модема, если на компьютере установлен разъем DB25, а кабель оканчивается разъемами DB9. Схему такого переходника мы приводим на следующем рисунке:

Заметим, что многие устройства (такие, как терминалы и модемы) позволяют управлять состоянием отдельных линий RS-232-C посредством внутренних переключателей (DIP-switches). Эти переключатели могут менять свое значение на разных моделях модемов. Поэтому для их использования следует изучить документацию модема. Например, для hayes-совместимых модемов, если переключатель 1 находится в положении «выключен» (down), это означает, что модем не будет проверять наличие сигнала DTR. В результате модем может отвечать на приходящие звонки, даже если компьютер и не запрашивает у модема установление связи.

Технические параметры интерфейса RS-232-C

При передаче данных на большие расстояния без использования специальной аппаратуры из-за помех, наводимых электромагнитными полями, возможно возникновение ошибок. Вследствие этого накладываются ограничения на длину соединительного кабеля между устройствами DTR-DTR и DTR-DCE. Официальное ограничение по длине для соединительного кабеля по стандарту RS-232-C составляет 15,24 метра. Однако на практике это расстояние может быть значительно больше. Оно непосредственно зависит от скорости передачи данных. Согласно McNamara (Technical Aspects of Data Communications, Digital Press, 1982) определены следующие значения:

Скорость передачи,
бодах Максимальная длина для экранированного кабеля, м Максимальная длина для неэкранированного кабеля, м
1101524,0914,4
3001524,0914,4
1200914,4914,4
2400304,8152,4
4800304,876,2
960076,276,2

Уровни напряжения на линиях разъема составляют для логического нуля -15..-3 вольта, для логической единицы — +3..+15 вольт. Промежуток от -3 до +3 вольт соответствует неопределенному значению. Если вы подключаете внешние устройства к разъему интерфейса RS-232-C (а также при соединении двух компьютеров нуль-модемом), предварительно выключите его и компьютер, а также снимите статический заряд (подсоединив заземление). В противном случае можно вывести из строя асинхронный адаптер. Земля компьютера и земля внешнего устройства должны быть соединены вместе.
Источник: shems.h1.ru

PS/2

Разъем PS / 2 разработан IBM для подключения мыши и клавиатуры. Он был представлен в серии компьютеров IBM Personal Systems / 2, отсюда и название разъема PS / 2. Разъемы PS / 2 имеют пурпурный цвет для клавиатуры и зеленый для мыши.

PS / 2 — это 6-контактный разъем DIN. Схема выводов гнездового разъема PS / 2 показана ниже.

Несмотря на то, что распиновка портов PS / 2 для мыши и клавиатуры одинакова, компьютеры не распознают устройство при подключении к неправильному порту.

Порт PS / 2 теперь считается устаревшим портом, поскольку порт USB заменил его, и очень немногие современные материнские платы включают его в качестве устаревшего порта.

Последовательный порт

Последовательный порт Хотя связь в PS / 2 и USB является последовательной, технически термин «последовательный порт» используется для обозначения интерфейса, соответствующего стандарту RS-232. Есть два типа последовательных портов, которые обычно встречаются на компьютере: DB-25 и DE-9.

DB-25

DB-25 — это вариант разъема D-sub и оригинальный порт для последовательной связи RS-232. Они были разработаны как основной порт для последовательных подключений по протоколу RS-232, но для большинства приложений не требовались все контакты. Следовательно, DE-9 был разработан для последовательной связи на основе RS-232, в то время как DB-25 редко использовался в качестве последовательного порта и часто использовался как параллельный порт принтера как замена 36-контактного параллельного разъема Centronics.

DE-9 или RS-232 или COM порт

DE-9 является основным портом для последовательной связи RS-232. Это разъем D-sub с оболочкой E, который часто ошибочно называют DB-9. Порт DE-9 также называется COM-портом и обеспечивает полнодуплексную последовательную связь между компьютером и его периферией. Некоторые из приложений порта DE-9 — это последовательный интерфейс с мышью, клавиатурой, модемом, источниками бесперебойного питания (ИБП) и другими внешними устройствами, совместимыми с RS-232.

Распиновка порта DE-9 представлена ниже.

Использование портов DB-25 и DE-9 для связи сокращается и заменяется USB или другими портами.

RS-232 или EIA-232, и т.п.

Последовательный порт (serial port) (не путать с USB) обычно соответствует стандарту RS-232-C, EIA-232-D, или EIA-232-E. Это три обозачения одного и тоже. Основной стандарт RS (рекомендованный стандарт — Recommended Standard) получил префикс EIA (Electronics Industries Association) и позднее EIA/TIA после того как организация EIA было объединена с TIA (Telecommunications Industries Association). Спецификация EIA-232 также охватывает синхронную передачу данных, но в большинстве случаев синхронная передача данных не поддерживается чипами в компьютерах. Обозначение RS устарело, однако до сих пор широко используется. EIA будет использоваться далее на этом сайте более часто. Некоторые документы используют полное обозначение EIA/TIA.

Данные (байты из которых состоят письма, картинки и т.п.) проходят через последовательный порт. Скорости передачи данных (такие как 56k (56000) бит/сек) называются (неверно) «скоростью». Большинство людей неверно говорят «скорость» вместо «коэффициент скорости».

Важно знать, что средняя скорость передачи данных зачастую меньше максимально заявленной. Задержки (или периоды ожидания) и в результате скорость становится меньше. Эти задержки могут увеличиваться в щависимости от типа контроля передачи данных. Даже в лучшем случае всегда есть задержки между байтами, пусть даже и небольшие (несколько микросекунд). Если устройство, соединенное с компьютером через последоватльный порт не может работать на полной скорости, то средняя скорость должна быть уменьшена.

3.30. Параллельный и последовательный порты

Для того чтобы передать информацию какому-либо устройству или получить ее от этого устройства, компьютеру необходимо специально организовать процесс обмена данными.

Организация операций, связанных с вводом и выводом информации, подразумевает следующее:

  • соблюдение одинакового кода передаваемых данных (то есть «разговор на одном языке»);
  • согласование скоростей передачи и приема информации (или «диалог в одинаковом темпе»);
  • единство формата обмена данными (то есть способ дробления их на фрагменты, передаваемые за один цикл);
  • стандартный протокол специальных управляющих сигналов (команды, «понятные» принимающему и передающему устройству) .
  • стандартный;
  • улучшенный параллельный порт EPP (Enhanced Parallel Port);
  • порт с расширенными функциями ECP (Extended Capability Port).

30.07.2019 579.07 Кб 0 1.DOC
12.05.2015 556.03 Кб 13 1.DOC
Ограничение

Для продолжения скачивания необходимо пройти капчу:

Описание интерфейса RS-485

В промышленности чаще всего используется интерфейс RS-485 (EIA-485), потому что в RS-485 используется многоточечная топология, что позволяет подключить несколько приемников и передатчиков.

Интерфейс RS-485 похож на RS-422 тем что также использует дифференциальный сигнал для передачи данных.

Существует два типа RS-485:

  • RS-485 с 2 контактами, работает в режиме полудуплекс
  • RS-485 с 4 контактами, работает в режиме полный дуплекс

В режиме полный дуплекс можно одновременно принимать и передавать данные, а в режиме полудуплекс либо передавать, либо принимать.

В одном сегменте сети RS-485 может быть до 32 устройств, но с помощью дополнительных повторителей и усилителей сигналов до 256 устройств. В один момент времени активным может быть только один передатчик.

Скорость работы также зависит от длины линии и может достигать 10 Мбит/с на 10 метрах.

Напряжение на линиях находится в диапазоне от −7 В до +12 В.

Стандарт RS-485 не определяет конкретный тип разъема, но часто это клеммная колодка или разъем DB9.

Распиновка разъема RS-485 зависит от производителя устройства и указывается в документации на него.

Подключение RS-485 устройств с 2 контактами.

Подключение RS-485 устройств с 4 контактами.

Для согласования линии на больших расстояниях в RS-485 также ставят согласующие резисторы 120 Ом в начале и в конце линии.

Программы для работы с COM-портами

На компьютере интерфейсы RS-232/422/485 будут представлены как обычный СОМ порт. Соответственно подойдут почти любые программы и утилиты для работы с COM портом.

Каждый производитель выпускает свое ПО для работы с COM портом.

Например, MOXA разработала набор утилит PComm Lite, одна из которых позволяет работать с СОМ портом.

Производитель ICP DAS предлагает воспользоваться утилитой DCON Utility Pro с поддержкой протоколов Modbus RTU, ASCII и DCON. Скачать

COM порт глазами ремонтника. Ремонт, настройка, диагностика. Часть 1, теория.

Статья первая «COM порт – глазами ремонтника. Ремонт, настройка, диагностика».

Данный раздел содержит только теоретические данные и для практики имеет малое значение, однако именно на этот раздел будет ссылаться остальной материал, поэтому обойти стороной этот материал не удастся. Однако тем, кто знаком с принципом работы COM порта, данный раздел желательно пропустить.

Статья первая «COM порт – глазами ремонтника. Ремонт, настройка, диагностика».

Данный раздел содержит только теоретические данные и для практики имеет малое значение, однако именно на этот раздел будет ссылаться остальной материал, поэтому обойти стороной этот материал не удастся. Однако тем, кто знаком с принципом работы COM порта, данный раздел желательно пропустить.

Описание и принцип работы.

COM-порт(Communication port) — порт работающий по стандарту RS-232 (Recommended Standard 232). RS-232 — стандарт описывающий интерфейс для последовательной двунаправленной передачи двоичных данных между терминалом (DTE, Data Terminal Equipment) и конечным устройством (DCE,Data Circuit-Terminating Equipment ). В настоящее время действующим является RS-232C (Recommended Standard 232 Edition: C) редакция 1969 года, именно это стандарт мы и будем рассматривать далее. Интерфейс RS-232 реализован полностью аппаратно, это значит, что он работает всегда, не зависимо от ОС (операционной системы) или даже без ОС.

Разъемы интерфейса COM порта.

На компьютере интерфейс реализуется одним из двух типов разъемов: DB-9M или DB-25M (разъем DB-25M на современных компьютерах не применяется, однако DB-25F(M), напротив, широко используется в переферийных устройствах например — ККМ, принтера).
В современных компьютерах бытового назначения разъем COM порта может не выводится непосредственно наружу, а организован в виде вывода под планку COM порта, либо вообще отсутствует. Начиная с 1999 по спецификации РС 99 интерфейс RS-232 должен заменяться интерфейсом USB.

COM порт непосредственно установленный на материнской платеCOM порт на материнской плате под планку COM портаПланка COM порта

В чем отличие разъема DB-9M от DE-9M, какое обозначение правильное?

Правильное обозначение DE-9M, но есть некотороые нюансы.

Если придерживаться технической документации разъемов D-sub обойма B отличается по типоразмеру от обоймы E

Разъём D-sub содержит два или более параллельных рядов контактов или гнёзд, обычно окружённых металлическим экраном в форме латинской D, который обеспечивает механическое крепление соединения и экранирует от электромагнитных помех. Форма разъёма в виде буквы D предохраняет от неправильной ориентации разъёма. В принятой системе обозначений буква D обозначает всю серию разъёмов D-sub, а вторая буква используется для указания размера разъёма, исходя из числа стандартных контактов, которые могут разместиться внутри D-образного экрана (A = 15 контактов, B = 25, C = 37, D = 50, E = 9), далее следует число фактически используемых контактов, и буква, обозначающая «пол» разъёма: M — male («папа»), F — female («мама»), P — plug (штепсель/«папа»), S — socket (розетка/«мама»). Например, DB25M означает разъём D-sub с экраном, вмещающим 25 контактов и фактическим числом контактов, равным 25.
Таким образом выражение DB-9M не правильное, фактически правильно будет DE-9M, однако в современных условиях, различие между этими названиями не делается, как в технической литературе, так и у поставщиков. Поэтому, как бы это не звучало странно, далее мы будем сознательно делать ошибку и разъем DE-9M называть, как DB-9M, хотя в реальности такого разъема не может быть по определению.

Разъем DB9M (папа), внешний вид, расположение контактов (pinout).

Назначение выводов 9 контактного (9pin) разъема DB9M COM порта со стороны компьютера по стандарту RS232C. Направление сигналов указано относительно хоста (компьютера).

Контакт Сигнал Направление Описание
1DCDВходData Carrier Detected — Несущая обнаружена
2RxDВходReceive Data — Принимаемые данные
3TxDВыходTransmit Data — Передаваемые данные
4DTRВыходData Terminal Ready — Готовность хоста (компьютера) к работе
5GNDSignal Ground — Схемная земля
6DSRВходData Set Ready — Готовность устройства к работе
7RTSВыходRequest To Send — Запрос на передачу (хост готов к передаче)
8CTSВходClear To Send — Готовность устройства к приему данных (устройство готово к приему)
9RIВходRing Indicator — Индикатор вызова

Разъем DB25M (папа), внешний вид, расположение контактов (pinout).

Назначение выводов 25 контактного (25pin) разъема DB25M COM порта со стороны компьютера по стандарту RS232C. Направление сигналов указано относительно хоста (компьютера).

Контакт Сигнал Направление Описание
1PGProtective Ground — Защитное заземление.
2TxDВыходTransmit Data — Передаваемые данные
3RxDВходReceive Data — Принимаемые данные
4RTSВыходRequest To Send — Запрос на передачу (хост готов к передаче)
5CTSВходClear To Send — Готовность устройства к приему данных (устройство готово к приему)
6DSRВходData Set Ready — Готовность устройства к работе
7GNDSignal Ground — Схемная земля
8DCDВходData Carrier Detected — Несущая обнаружена
20DTRВыходData Terminal Ready — Готовность хоста (компьютера) к работе
22RIВходRing Indicator — Индикатор вызова

Электрические характеристики COM порта (стандарт RS232C).

Полное описание можно посмотреть в документации действующего протокола ITU-T v.28 03.1993 в редакции от 1993 года (скачать).

Эквивалентная электрическая схема RS-232C

  • V0- напряжение генератора при разомкнутой схеме
  • R0- общее сопротивление генератора
  • C0- общая ёмкость генератора
  • V1- напряжение между сигнальной линией и общим проводом в месте стыка.
  • CL- общая ёмкость приёмника
  • RL- общее сопротивление приёмника
  • EL- ЭДС приёмника при разомкнутой схеме

  • Электрические характеристики приёмника сигналов.
  • RL- общее сопротивление приёмника должно находиться в пределах 3000. 7000 Ом.
  • V1- напряжение на входе приёмника должно быть в пределах ±3. ±15 В.
  • EL- ЭДС приёмника при разомкнутой схеме должно быть не более ±2 В.
  • CL- общая ёмкость цепей приёмника должна быть не более 2500 пФ.
  • Входной импеданс приёмника не должен быть индуктивным.
  • Электрические характеристики генератора сигналов.
  • Допускается короткое замыкание сигналов.
  • Допускается оставлять выход генератора без нагрузки.
  • V0- напряжение генератора при разомкнутой схеме должно быть не более ±25В/±15 В (RS-232/ITU-T v.28)
  • R0 и C0 для генератора не нормируются.
  • Короткое замыкание цепей генератора не должно вызывать токи величиной более 0,5А.
  • Если EL=0, то напряжение на входе приёмника должно быть V1=±5. ±15 В, для любого диапазона нагрузки генератора RL=3000. 7000 Ом.
  • Генератор должен быть способен работать на ёмкостную нагрузку C0 плюс 2500 пФ.
  • Уровни сигналов для стандарта RS-232C.
  • Логической «1» считается информационный сигнал с напряжением V1 менее -3 В.
  • Логическим «0» считается информационный сигнал с напряжением V1 более +3 В.
  • Сервисный или синхронизирующий сигнал считается включенным «ON»(«MARK») если V1 более +3 В.
  • Сервисный или синхронизирующий сигнал считается выключенным «OFF»(«SPACE») если V1 менее -3 В.
  • Напряжение в диапазоне V1=-3 В. +3 В считается переходной областью.
  • Характеристики сигналов.
  • Все сигналы вошедшие в область перехода V1=-3В. +3В должны выйти в противоположный сигнал без повторного захода в эту область (т.е. монотонно).
  • Не допускается колебания сигнала в области перехода.
  • Сервисные и синхронизирующие сигналы должны проходить область перехода за время не более 1мс.
  • Сигналы данных должны проходить область перехода за время не более 3% от времени одиночного элемента, но не более чем за 1 мс.
  • Скорость нарастания фронта сигнала не должна превышать величины 30В за миллисекунду.
  • Ограничения первых двух пунктов не относятся к электромеханическим устройствам размыкания и замыкания цепи.

Описание контактов интерфейса RS232C

  • GND- Ground, (общий) второй провод для всех сигналов.(Сигналы передаются всегда по двум проводам!)
  • TxD- Transmited Data, асинхронный канал для передачи данных.
  • RxD- Received Data, асинхронный канал для приема данных.
  • RTS- Request To Send (запрос на передачу), Выход который говорит о том, что у компьютера есть данные для передачи по каналу TxD для конечного устройства.
  • DTR- Data Terminal Ready(готовность терминала данных), Выход который говорит о том, что компьютер(терминал) готов к обмену данными с конечным устройством
  • CTS- Clear To Send (очищен для передачи) Вход, который говорит о том, что конечное устройство готово принимать данные от терминала по каналу TxD. Обычно этот сигнал выставляет конечное устройство после того, как оно получит от компьютера сигнал RTS=True(запрос на передачу) и будет готово принять данные от компьютера. Если конечное устройство не выставит сигнал CTS=True, то передача по каналу TxD не начнется. Данный сигнал используется для аппаратного управления потоками данных
  • DSR- Data Set Ready(установка данных готова), Вход который говорит о том, что конечное устройство выполнило все установки и готово начать передавать и принимать данные от компьютера. Если конечное устройство модем, то установка DSR=True воспринимается компьютером(терминалом) так, что модем уже установил связь с другим модемом и готов начать процедуру обмена между двумя компьютерами оснащенных модемами
  • DCD- Data Carrier Detected(обнаружен носитель информации), Вход который информирует компьютер(терминал) об обнаружении другого терминала, то есть конечное устройство , например модем, обнаружил другой модем, который хочет инициализировать обмен данных между терминалами. Модем выставляет сигнал DCD=True, который обнаруживается на входе компьютера(терминала). Если терминал готов к обмену данными, то он на сигнал DCD=True должен выставить сигнал готовности терминала к обмену данными DTR=True, после чего начинается обмен данными между двумя терминалами.
  • RI- Ring Indicator(индикатор звонка), Вход который говорит компьютеру(терминалу) что на конечное устройство поступает сигнал вызова. Например, на модем поступил сигнал вызова с телефонной станции, совсем не обязательно, что этот вызов закончится обменом данных.

Следует отметить, что данные инверитрованы, т.е -12в- это логическая еденица, +12в -это логический ноль, а служебные сигналы +12в — это Mark (логическая еденица), -12 — это Space(логический ноль).

Протокол обмена данными.

В протоколе RS-232 существуют два метода управления обменом данных: аппаратный и программный, а также два режима передачи: синхронный и асинхронный. Протокол позволяет использовать любой из методов управления совместно с любым режимом передачи. Также допускается работа без управления потоком, что подразумевает постоянную готовность хоста и устройства к приему данных, когда связь установлена (сигналы DTR и DSR установлены).

Аппаратный метод управления реализуется с помощью сигналов RTS и CTS. Для передачи данных хост (компьютер) устанавливает сигнал RTS и ждет установки устройством сигнала CTS, после чего начинает передачу данных до тех пор, пока сигнал CTS установлен. Сигнал CTS проверяется хостом непосредственно перед началом передачи очередного байта, поэтому байт, который уже начал передаваться, будет передан полностью независимо от значения CTS. В полудуплексном режиме обмена данными (устройство и хост передают данные по очереди, в полнодуплексном режиме они могут делать это одновременно) снятие сигнала RTS хостом означает его переход в режим приема.

Программный метод управления заключается в передаче принимающей стороной специальных символов остановки (символ с кодом 0x13, называемый XOFF) и возобновления (символ с кодом 0x11, называемый XON) передачи. При получении данных символов передающая сторона должна соответственно остановить передачу или возобновить ее (при наличии данных, ожидающих передачи). Этот метод проще с точки зрения реализации аппаратуры, однако обеспечивает более медленную реакцию и соответственно требует заблаговременного извещения передатчика при уменьшении свободного места в приемном буфере до определенного предела.

Синхронный режим передачи подразумевает непрерывный обмен данными, когда биты следуют один за другим без дополнительных пауз с заданной скоростью. Этот режим COM-портом не поддерживается.

Асинхронный режим передачи состоит в том, что каждый байт данных (и бит контроля четности, в случае его наличия) «оборачивается» синхронизирующей последовательностью из одного нулевого старт-бита и одного или нескольких единичных стоп-битов.

Протокол имеет ряд переменных параметров, которые должны быть приняты одинаковыми на стороне приемника и на стороне передатчика для успешного обмена данными:

  • Скорость обмена данными задается в битах в секунду, определяя длительность одного бита, выбирается из ряда стандартных значений (300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200), но могут быть и нестандартными, если поддерживаются обеими сторонами;
  • Количество бит данных может быть от 4 до 8;
  • Контроль четности может быть четным («even», когда общее число единичных битов в принятых данных, включая сам бит четности, должно быть четным), нечетным («odd», когда общее число единичных битов в принятых данных, включая сам бит четности, должно быть четным) или вообще отсутствовать;
  • Длина стоп-бита может составлять одну, полторы или две длительности бита.

Принцип работы

Последовательные порты, как подсказывает их название, передают данные последовательно, один бит за другим. Это, хотя и кажется менее эффективным по сравнению с параллельной передачей, на самом деле обеспечивает большую надежность, особенно в условиях ограниченной пропускной способности.

Эти порты использовались для подключения множества устройств, от модемов и мышей до некоторых принтеров. Даже сегодня, несмотря на наличие более современных интерфейсов, последовательные порты сохраняют своё место в промышленных и встроенных системах благодаря своей простоте и надежности.

В России, как и во всем мире, последовательные порты в своё время были фундаментом для подключения различных устройств к компьютерам, играя ключевую роль в развитии компьютерной индустрии в эпоху, когда другие технологии только начинали свой путь.

Сравнение параллельных и последовательных портов

Параллельные и последовательные порты, хоть и различаются по своим характеристикам, каждый по-своему внесли значительный вклад в развитие компьютерных технологий.

В плане скорости передачи данных, параллельные порты изначально опережали последовательные, благодаря способности передавать до 8 бит данных одновременно. Это делало их идеальным выбором для подключения принтеров и других устройств, где требовалась высокая скорость передачи. Напротив, последовательные порты передают данные бит за битом, что делает их медленнее, но в то же время подходящими для устройств, где высокая скорость передачи не является критичной.

Сфера применения этих портов также различается. Параллельные порты чаще всего использовались для подключения принтеров и сканеров, в то время как последовательные порты нашли свое применение в более широком спектре устройств, включая модемы, мыши и некоторые типы принтеров. С развитием технологий использование параллельных портов сократилось, но они по-прежнему встречаются в специализированных и промышленных приложениях, в то время как последовательные порты продолжают использоваться во многих промышленных и встроенных системах.

Физические и технические различия между этими портами также значительны. Параллельные порты обычно имеют широкий разъем с множеством контактов, в то время как последовательные порты меньше по размеру. С технической точки зрения, параллельные порты, хотя и более склонны к помехам при передаче на большие расстояния, обеспечивают более высокую скорость передачи по сравнению с последовательными портами, которые более надежны в этом плане из-за своей способности передавать данные последовательно.

рекомендации
Ищем PHP-программиста для апгрейда конфы

В России, как и во всем мире, использование параллельных и последовательных портов тесно связано с технологическими потребностями и возможностями определенного исторического периода. С развитием более современных интерфейсов, оба типа портов уступили место новым технологиям, но их вклад в развитие компьютерных технологий остается значимым.

Оцените статью
TutShema
Добавить комментарий