Подключение пускового конденсатора к электродвигателю 220в

Подключение пускового конденсатора к электродвигателю 220в
Содержание

Среди различных способов запуска трехфазных электродвигателей в однофазную сеть, наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность развиваемая двигателем в этом случае составляет 50. 60% от его мощности в трехфазном включении. Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, с двойной клеткой короткозамкнутого ротора серии МА. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.

1.2. Расчет параметров и элементов электродвигателя.

Если, например, в паспорте электродвигателя указано напряжение его питания 220/380, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1

Рис. 1 Принципиальная схема включения трехфазного электродвигателя в сеть 220 В:

С р — рабочий конденсатор;

С п — пусковой конденсатор;

После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку «Разгон». После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.

Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в «треугольник» определяется по формуле:

, гдеСр — емкость рабочего конденсатора в мкФ;
I — потребляемый электродвигателем ток в А;
U -напряжение в сети, В

А в случае соединения обмоток двигателя в «звезду» определяется по формуле:

, гдеСр — емкость рабочего конденсатора в мкФ;
I — потребляемый электродвигателем ток в А;
U -напряжение в сети, В

Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:

, гдеР — мощность двигателя в Вт, указанная в его паспорте;
h — кпд;
cos j — коэффициент мощности;
U -напряжение в сети, В

Емкость пускового конденсатора Сп выбирают в 2..2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети. Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В. Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)

Подключение электродвигателя 380В на 220В через конденсаторы и кнопку ПНВС. Реверс.

Общая емкость соединенных конденсаторов составит (С1+С2)/2.

На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя по табл. 1

Таблица 1. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.
Мощность трехфазного двигателя, кВт0,40,60,81,11,52,2
Минимальная емкость рабочего конденсатора Ср, мкФ406080100150230
Минимальная емкость пускового конденсатора Ср, мкФ80120160200250300

Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20. 30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, то в этом случае емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.

Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой — 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

1.3. Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В.

Для запуска электродвигателей различных серий, мощностью около 0,5 кВт, от однофазной сети без реверсирования, можно собрать переносной универсальный пусковой блок (рис. 3)

При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1 к сети 220 В. Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1. После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1. Остановка двигателя осуществляется нажатием на кнопку SB2.

1.3.1. Детали.

В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об/мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 — спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 — проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.

Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4)

Рис. 4 Внешний вид пускового устройства и чертеж панели поз.7.

1- корпус2 — ручка для переноски 3 — сигнальная лампа4 — тумблер отключения пускового конденсатора
5 -кнопки «Пуск» и «Стоп»6 — доработанная электровилка7- панель с гнездами разъема

На верхней панели корпуса расположены кнопки «Пуск» и «Стоп» — сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для подключения электродвигателя.

Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5)

При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 — пусковой конденсатор Сп. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети. Кнопку «Пуск» держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме. Для остановки электродвигателя следует нажать кнопку «Стоп». В усовершенствованном пусковом устройстве по схеме рис.5, можно использовать реле типа МКУ-48 или ему подобное.

Использование электролитических конденсаторов в схемах запуска электродвигателей.

При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки. Схема эквивалентной замены обычного бумажного дана на рис. 6

Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости. Например, если в схеме для однофазно сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене, по вышеприведенной схеме, можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

2.1. Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов.

Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.

В приведенной схеме, SA1 — переключатель направления вращения двигателя, SB1 — кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 — во время работы.

Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добивается равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация. Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А. При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током, или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.

Следует обратить ВНИМАНИЕ на то, что при перегрузке диода может произойти его пробой и через электролитический конденсатор потечет переменный ток, что может привести к его нагреву и взрыву.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

Подключение пускового конденсатора к электродвигателю 220в

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема – подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Полезное на сайте:
Схема подключения генератора в автомобилях ВАЗ

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Схема подключения двигателя через конденсатор

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В – обязательно подключайте к нему – это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Подключение однофазного двигателя

Для подключения асинхронного двигателя в однофазную цепь обычно используется напряжение 220 В. Но для запуска необходимо создать вращательный момент смещения ротора. С этой целью применяется пусковая обмотка, которая является дополнительной и функционирует только при запуске. На ней при помощи конденсатора задается смещение фазы.

Конденсатор и однофазный двигатель

Емкость выбирается по следующему принципу. Общая емкость (рабочая и пусковая) на 100 Вт мощности составляет приблизительно 1 мкФ. Если необходимо подобрать конденсаторы для запуска электродвигателя мощностью 1,5 кВт, то ее достаточно легко рассчитать: 1,5 х 1000 : 100 х 1 = 15 мкФ. Таким образом, чтобы подключить однофазный асинхронный двигатель мощностью 1,5 кВт, необходимо использовать рабочий и пусковой конденсатор общей емкостью 15 мкФ.

Подключение пускового конденсатора

Подобные двигатели имеют несколько режимов работы:

  • Подключаемая дополнительная обмотка к пусковому конденсатору. Емкость подбирается из соображений 70 мкФ на киловатт мощности.
  • Дополнительная обмотка, задействована на всем периоде работы совместно с рабочим конденсатором, емкость около 30 мкФ.
  • Подключение двух типов конденсаторов одновременно.

Трехфазный двигатель

При подключении трехфазного двигателя используется рабочий конденсатор.

Чтобы правильно подобрать конденсатор для трехфазного электродвигателя, в первую очередь следует рассчитать его минимальную емкость.

Однофазный электродвигатель

В основу схемы подключения электродвигателя на 220В через конденсатор положена способность этой детали накапливать заряд, а затем отдавать его подключенному устройству. В нашем случае — второй обмотке статора электромотора. Первая подключается к сети 220 В напрямую.

Такое электротехническое решение позволяет получить нужный для вращения ротора сдвиг фаз. Включаться обмотки будут попеременно. Первая — от напряжения в сети в момент пика фазы. Вторая — от заряда, выдаваемого конденсатором, когда напряжение спадает.

Схема подключения конденсатора к однофазному электродвигателю

Схема подключения конденсатора к электродвигателю 220В с двумя обмотками — однофазному, выглядит следующим образом:

  • Первая обмотка подключается напрямую к проводам питания. Она начинает работать при возрастании напряжения в сети. При снижении — отключается.
  • Вторая обмотка включена через конденсатор. В момент нарастания напряжения в сети он забирает заряд. А при падении отдает его во вторую обмотку. Происходит это с задержкой по времени относительно первой. Тем самым образуется сдвиг фаз примерно в 90°.

Данная схема позволит поддерживать вращение ротора. Но запустить его она неспособна. Чтобы придать ротору вращение, необходимо внести дисбаланс в равновесную систему двух обмоток.

Для этого используют еще один конденсатор. Он называется пусковым и имеет большую, чем у рабочего, емкость. Присоединяется он параллельно первому через нормально закрытый контакт. В результате на время пуска емкость увеличивается. И достигается нужный для начала вращения ротора дисбаланс.

При подключении электродвигателя через конденсатор на 220 В используют специальную пусковую кнопку ПНВС. Ее центральный контакт остается замкнутым, пока оператор удерживает клавишу старта нажатой. Когда он отпускает ее, за счет упругости пружины тумблер переходит в отключенное положение. Контакт физически разрывается, одновременно отключая пусковой конденсатор от сети. Далее электродвигатель функционирует с одним — рабочим.

Трехфазный двигатель

Отметим, что лучший способ, как подключить электродвигатель 220В, рассчитанный на трехфазное питание от однофазной сети — установка частотного преобразователя. Это устройство позволяет получить на выходе три фазы. К которым и присоединяются три обмотки электромотора без доработок и оговорок. Как если бы для его питания использовалось полноценное трехфазное напряжение.

Подключение через конденсатор и другие разработанные электриками схемы с использованием недорогих и простых деталей ведут к потере передаваемой мощности. Таким образом, снижают КПД электромотора.

Еще один важный момент — сама возможность подключения к напряжению 220 В. Как правило, эта информация указывается на табличке, расположенной на корпусе агрегата. Если производитель заявляет только работу от 380 В, то подключение по 220 В может привести к перегреву обмоток и преждевременному выходу их из строя. В универсальных моделях можно увидеть обозначение 380/220 В.

Схема подключения для трехфазного двигателя

Схема подключения электродвигателя на 220В для трехфазной модели выглядит иначе, чем для однофазного. Рабочих обмоток в этих моделях три. Существуют два способа их соединения:

  • Треугольником. Конец каждой соединен с началом следующей.
  • Звездой. Концы всех обмоток сходятся в одной точке.

Нужный способ соединения выбирается с помощью перемычек, установленных на матрице винтовых контактов 2×3. Назначение выводов указано в паспорте изделия. И может дублироваться на корпусе.

В электромоторах российского образца могут применяться международные обозначения. Обмотки обозначаются буквами U, V, W. Цифрами после них маркируются начала — 1 и окончания — 2. Таким образом, первая обмотка — U1-U2. Также можно встретить советский стандарт обозначения, где С1-С4 — начало и конец первой обмотки, остальные — С2-С5 и С3-С6.

Во всех непонятных случаях ориентируются на паспорт изделия, табличку на электромоторе или на результаты измерения сопротивления между выводами омметром. Методику можно найти в открытых источниках в интернете.

Схема, как подключить трехфазный электродвигатель на 220 Вольт, будет различаться для соединения обмоток треугольником и звездой:

  • При «звезде» рабочий конденсатор присоединяется между началами обмоток W и V. На начало U подается ноль, на начало V — фаза. Пусковой через контакт кнопки ПНВС включается параллельно рабочему.
  • При «треугольнике» рабочая емкость подключается между точками W1/V2 и U2/V1. Напомним, что при таком способе соединения начало следующей обмотки соединено с концом предыдущей. Ноль подается в точку схемы W2/U1. Пусковая емкость снова устанавливается параллельно рабочей через кнопку.

Хотя максимально эффективной, с точки зрения эффективности передачи мощности на ротор, считается схема соединения обмоток «треугольник», использовать ее можно не всегда. Ориентиром снова являются указания производителя. На табличке в универсальных моделях указываются значки треугольника и звезды, разделенные наклонной чертой или иным графическим способом.

Подбор емкости конденсаторов: рабочего и пускового, выполняется, исходя из мощности электромотора. В интернете можно найти онлайн-калькуляторы, учитывающие способ подключения обмоток трехфазного электродвигателя: треугольник/звезда. Они вычисляют емкость — в зависимости от заданной пользователем мощности.

Обзор моделей

Существует несколько популярных моделей, которые можно встретить в продаже.

Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:

  1. Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
  2. Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
  3. Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.

Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.