Обладают ли электрическим зарядом протоны нейтроны электроны

Многие физические явления, наблюдаемые в природе и окружающей нас жизни, не могут быть объяснены только на основе законов механики, молекулярно-кинетической теории и термодинамики. В этих явлениях проявляются силы, действующие между телами на расстоянии, причем эти силы не зависят от масс взаимодействующих тел и, следовательно, не являются гравитационными. Эти силы называют электромагнитными силами .

О существовании электромагнитных сил знали еще древние греки. Но систематическое, количественное изучение физических явлений, в которых проявляется электромагнитное взаимодействие тел, началось только в конце XVIII века. Трудами многих ученых в XIX веке завершилось создание стройной науки, изучающей электрические и магнитные явления. Эта наука, которая является одним из важнейших разделов физики, получила название электродинамики .

Основными объектами изучения в электродинамике являются электрические и магнитные поля, создаваемые электрическими зарядами и токами.

Электрическое поле

1.1. Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами или .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными.
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду .

Электрические заряды

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером . Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными . Элементарный заряд является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Рисунок 1.1.1.

Перенос заряда с заряженного тела на электрометр

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка .

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Рисунок 1.1.2.

Прибор Кулона

Рисунок 1.1.3.

Силы взаимодействия зарядов

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона: Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения .

Коэффициент в системе СИ обычно записывают в виде:

где – электрическая постоянная .

В системе СИ элементарный заряд равен:

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Рисунок 1.1.4.

Принцип суперпозиции электростатических сил
Модель. Взаимодействие точечных зарядов

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов .

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Обладают ли электрическим зарядом протоны, нейтроны, электроны?

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,672
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Физика. 5 класс.

1. Обладают ли электрическим зарядом протоны, нейтроны, электроны?

2. В ядре частицы: 7 протонов и 7 нейтронов. Вокруг ядра движутся 6 электронов. Как называется частица?

3. В ядре частицы: 8 протонов и 8 нейтронов. Вокруг ядра движутся 9 электронов. Как называется частица?

Знаете ответ на вопрос?
Не уверены в ответе?

Правильный ответ на вопрос «Физика. 5 класс. Помогите с вопросами. 1. Обладают ли электрическим зарядом протоны, нейтроны, электроны? 2. В ядре частицы: 7 протонов и 7 . » по предмету Физика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант — оцените ответы на похожие вопросы. Но если вдруг и это не помогло — задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!

Похожие вопросы по физике

Какие частицы входят в состав ядра атома а. протоны электроны б. электроны протоны нейтроны в протоны и нейтроны г нейтроны и электроны

Какие частицы не входят в состав ядра атома? 1) Протоны и электроны 2) Электроны протоны и нейтроны 3) Протоны и нейтроны 4) Нейтроны и электроны

В ходе экспериментов с радиоактивными веществами было обнаружено, что образовавшееся радиоактивное излучение состоит тол Альфа-частицы и нейтроны Электроны и нейтроны Электроны и альфа-частицы Нейтроны, электроны и альфа-частицы

Ядро атома не состоит из: а) протоны в) протоны и нейтроны с) электроны д) электроны и протоны е) нейтроны

Если ядро состоит из 92 протонов и 144 нейтронов, то после испускания двух альфа — частиц и одной бэтта — частицы, образовавшееся ядро будет состоять из: 88 протонов и 140 нейтронов 89 протонов и 139 нейтронов 88 протонов и 138 нейтронов 90 протонов

Помогите с ответом
Найдите площадь ромба, если его высота равна 16 см, а острый угол равен 30
Нет ответа

Сделайте синтасический разбор предложений: Быстро растаял под лучами яркого солнца снег. Хороши летом глазастые ромашки! Идёшь в тишине, и уха коснётся трубный звук.

Нет ответа
С. Сахарнов «Летучая рыба»
Нет ответа
Вычислите: 4/5 * 10/27 * 15/16 4/7 * 35/36 * 3/5 30/77 * 11/18 * 3/25 20/13 * 39/100 * 10/21
Нет ответа

Объясните, почему уважение американцев к труду можно считать одной из причин подъёма экономики. 19 Век

Нет ответа

Главная » Физика » Физика. 5 класс. Помогите с вопросами. 1. Обладают ли электрическим зарядом протоны, нейтроны, электроны? 2. В ядре частицы: 7 протонов и 7 нейтронов. Вокруг ядра движутся 6 электронов. Как называется частица? 3.

Электростатика. Взаимодействие зарядов. Два вида электрических зарядов.

Простые опыты по электризации различных тел иллюстрируют следующие положения.

1. Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.

2. Заряды (или заряженные тела) взаимодействуют друг с другом. Одноименные заряды оттал­киваются, а разноименные заряды притягиваются.

3. Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда. При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — поло­жительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями заря­дов с помощью электрометров.

Объяснить, почему тела электризуются (т. е. заряжаются) при трении, стало возможным после открытия электрона и изучения строения атома. Как известно, все вещества состоят из атомов; атомы, в свою очередь, состоят из элементарных частиц — отрицательно заряженных электронов, положительно заряженных протонов и нейтральных частиц — нейтронов. Электроны и протоны являются носителями элементарных (минимальных) электрических зарядов.

Элементарный электрический заряд (е) — это наименьший электрический заряд, положи­тельный или отрицательный, равный величине заряда электрона:

Заряженных элементарных частиц существует много, и почти все они обладают зарядом +e или -e, однако эти частицы весьма недолговечны. Они живут меньше миллионной доли се­кунды. Только электроны и протоны существуют в свободном состоянии неограниченно долго.

Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома, вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электроцентралей.

В обычных условиях тела, состоящие из атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными; тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, — отрицательно.

Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приоб­ретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся заря­дов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.

Определение заряда.

Следует особо подчеркнуть, что заряд является неотъемлемым свойством частицы. Частицу без заряда представить себе можно, но заряд без частицы — нельзя.

Проявляют себя заряженные частицы в притяжении (разноименные заряды) либо в отталкивании (одноименные заряды) с силами, на много порядков превышающими гравитационные. Так, сила электрического притяжения электрона к ядру в атоме водорода в 10 39 раз больше силы гра­витационного притяжения этих частиц. Взаимодействие между заряженными частицами называется электромагнитным взаимодействием, а электрический заряд определяет интенсивность электромагнитных взаимодействий.

В современной физике так определяют заряд:

Электрический заряд — это физическая величина, являющаяся источником электрического поля, посредством которого осуществляется взаимодействие частиц, обладающих зарядом.

Откуда нам известно, что ядро атома маленькое?

Одно дело – убедить себя, что определённое ядро определённого изотопа содержит Z протонов и N нейтронов; другое – убедить себя, что ядра атомов крохотные, и что протоны с нейтронами, будучи сжатыми вместе, не размазываются в кашу и не разбалтываются в месиво, а сохраняют свою структуру, как подсказывает нам мультяшное изображение. Как это можно подтвердить?

Я уже упоминал, что атомы практически пусты. Это легко проверить. Представьте себе алюминиевую фольгу; сквозь неё ничего не видно. Поскольку она непрозрачная, вы можете решить, что атомы алюминия:
1. Настолько крупные, что между ними нет просветов,
2. Настолько плотные и твёрдые, что свет сквозь них не проходит.

Насчёт первого пункта вы будете правы; в твёрдом веществе между двумя атомами почти нет свободного пространства. Это можно наблюдать на изображениях атомов, полученных при помощи особых микроскопов; атомы похожи на маленькие сферы (краями которых служат края электронных облаков), и они довольно плотно упакованы. Но со вторым пунктом вы ошибётесь.

Рис. 4

Если бы атомы были непроницаемыми, тогда сквозь алюминиевую фольгу ничто не смогло бы пройти – ни фотоны видимого света, ни рентгеновские фотоны, ни электроны, ни протоны, ни атомные ядра. Всё, что вы направили бы в сторону фольги, либо застревало бы в ней, либо отскакивало бы – точно так же, как любой кинутый объект должен отскочить или застрять в гипсокартонной стенке (рис. 3). Но на самом деле электроны высокой энергии легко могут пройти через кусочек алюминиевой фольги, как и рентгеновские фотоны, высокоэнергетические протоны, высокоэнергетические нейтроны, высокоэнергетические ядра, и так далее. Электроны и другие частицы – почти все, если точнее – могут пройти через материал, не потеряв ни энергии, ни импульса в столкновениях с чем-либо, содержащимся внутри атомов. Лишь малая часть их ударится об атомное ядро или электрон, и в этом случае они могут потерять большую часть своей начальной энергии движения. Но большая часть электронов, протонов, нейтронов, рентгеновских лучей и всякого такого просто спокойно пройдут насквозь (рис. 4). Это не похоже на швыряние гальки в стену; это похоже на швыряние гальки в сетчатый забор (рис. 5).

Рис. 5

Чем толще фольга – к примеру, если складывать всё больше и больше листов фольги вместе – тем вероятнее частицы, запущенные в неё, столкнуться с чем-либо, потеряют энергию, отскочат, изменят направление движения или даже остановятся. То же было бы верно, если бы вы наслаивали одну за другой проволочные сетки (рис. 6). И, как вы понимаете, из того, насколько далеко средняя галька может проникнуть сквозь слои сетки и насколько велики разрывы в сетке, учёные могут подсчитать на основании пройденной электронами или атомными ядрами дистанции, насколько атом пустой.

Рис. 6

Посредством таких экспериментов физики начала XX века установили, что внутри атома ничто – ни атомное ядро, ни электроны – не может быть большим, чем одна тысячная миллионных миллионных долей метра, то есть в 100 000 раз меньше самого атома. То, что такого размера достигает ядро, а электроны по меньшей мере в 1000 раз меньше, мы устанавливаем в других экспериментах – например, в рассеянии высокоэнергетических электронов друг с друга, или с позитронов.

Чтобы быть ещё более точным, следует упомянуть, что некоторые частицы потеряют часть энергии в процессе ионизации, в котором электрические силы, действующие между летящей частицей и электроном, могут вырвать электрон из атома. Это дальнодействующий эффект, и столкновением на самом деле не является. Итоговая потеря энергии значительна для летящих электронов, но не для летящего ядра.

Вы можете задуматься над тем, похоже ли то, как частицы проходят сквозь фольгу, на то, как пуля проходить сквозь бумагу – расталкивая части бумаги в стороны. Возможно, первые несколько частиц просто расталкивают атомы в стороны, оставляя большие отверстия, через которые проходят последующие? Мы знаем, что это не так, поскольку мы можем провести эксперимент, в котором частицы проходят внутрь и наружу контейнера, сделанного из металла или стекла, внутри которого вакуум. Если бы частица, проходя через стенки контейнера, создавала отверстия по размеру превышающие атомы, тогда внутрь устремились бы молекулы воздуха, и вакуум бы исчез. Но в таких экспериментах вакуум остаётся!

Также довольно легко определить, что ядро – это не особенно структурированная кучка, внутри которой нуклоны сохраняют свою структуру. Об этом уже можно догадаться по тому факту, что масса ядра очень близка к сумме масс содержащихся в нём протонов и нейтронов. Это выполняется и для атомов, и для молекул – их массы почти равны сумме масс их содержимого, кроме небольшой коррекции на связывающую энергию – и это отражено в том факте, что молекулы довольно легко разбить на атомы (к примеру, нагрев их так, чтобы они сильнее сталкивались друг с другом), и выбить электроны из атомов (опять-таки, при помощи нагрева). Сходным образом относительно легко разбить ядра на части, и этот процесс будет называться расщеплением, или собрать ядро из более мелких ядер и нуклонов, и этот процесс будет называться синтезом. К примеру, относительно медленно двигающиеся протоны или небольшие ядра, сталкивающиеся с более крупным ядром, могут разбить его на части; нет необходимости, чтобы сталкивающиеся частицы двигались со скоростью света.

Рис. 7

Но чтобы понять, что это не является неизбежным, упомяну, что этими свойствами не обладают сами протоны и нейтроны. Масса протона не равняется примерной сумме масс содержащихся в нём объектов; протон нельзя разбить на части; а для того, чтобы протон продемонстрировал что-нибудь интересное, необходимы энергии, сравнимые с энергией массы самого протона. Молекулы, атомы и ядра относительно просты; протоны и нейтроны чрезвычайно сложны.

  • Научно-популярное
  • Физика

Элементарные частицы: заряды, цвета и другие загадки микромира

Элементарные частицы — это самые маленькие кусочки материи, из которых состоит все, что нас окружает. Они так малы, что их невозможно увидеть даже в самый мощный микроскоп. Для их изучения нужны специальные устройства, называемые ускорителями частиц, которые разгоняют частицы до огромных скоростей и сталкивают их друг с другом. Так можно узнать, какие частицы есть в природе, какие свойства они имеют и как они взаимодействуют между собой.

Существует много видов элементарных частиц, но все они можно разделить на две большие группы: фермионы и бозоны. Фермионы — это частицы, из которых состоят атомы и молекулы. Бозоны — это частицы, которые передают силу между фермионами. Например, когда два магнита притягиваются или отталкиваются, это происходит благодаря бозонам, называемым фотонами. Фотоны — это те же самые частицы, из которых состоит свет.

Одно из важных свойств элементарных частиц — это электрический заряд. Это то, что определяет, как частицы реагируют на электрическое поле. Некоторые частицы имеют положительный заряд, некоторые — отрицательный, а некоторые — нейтральный. Например, электрон — это фермион с отрицательным зарядом, протон — это фермион с положительным зарядом, а нейтрон — это фермион без заряда. Фотон — это бозон без заряда.

Заряд элементарной частицы может быть кратен 1/3 или 1 элементарного заряда (обозначается e). Элементарный заряд — это минимальный заряд, который может иметь частица. Например, электрон имеет заряд -1e, а протон имеет заряд +1e. Существуют также частицы с более сложным зарядом: например, кварки. Кварки — это фермионы, из которых состоят протоны и нейтроны. Кварки имеют заряд +2/3e или -1/3e. Например, протон состоит из двух кварков с зарядом +2/3e и одного кварка с зарядом -1/3e. Сложив эти заряды, получим +1e — заряд протона.

Значение заряда элементарной частицы не меняется со временем и не зависит от того, где находится частица. Однако заряд может переходить от одной частицы к другой при их взаимодействии. Например, если электрон столкнется с протоном, то он может передать ему свой отрицательный заряд и стать нейтральным. Тогда протон станет нейтроном, а электрон станет нейтрино — фермионом без заряда.

Кроме электрического заряда, существуют также цветной заряд и лептонный заряд. Цветной заряд — это свойство кварков и глюонов, которые участвуют в сильном взаимодействии. Цветной заряд может принимать три значения: красный, зеленый или синий, а также их антицвета: антикрасный, антизеленый или антисиний. Цветные частицы обмениваются глюонами, которые также имеют цветной заряд. Лептонный заряд — это свойство лептонов и кварков, которые участвуют в лептонном взаимодействии. Лептонный заряд может принимать два значения: +1/2 или -1/2. Лептонные частицы обмениваются бозонами W и Z, которые не имеют лептоного заряда, но имеют электрический заряд и массу.

Лептоны и цветные частицы — это два вида элементарных частиц, которые имеют разные свойства и взаимодействия. Лептоны — это частицы, которые не участвуют в сильном взаимодействии, а только в дептонном, электромагнитном и гравитационном. Цветные частицы — это частицы, которые участвуют в сильном взаимодействии, а также в лептонном, электромагнитном и гравитационном. Сильное взаимодействие — это одна из четырех фундаментальных сил природы, которая держит вместе атомные ядра.

Примеры лептонов — это электрон, мюон, тау-лептон и нейтрино. У каждого лептона есть своя античастица, которая имеет противоположный заряд и лептонное число. Лептонное число — это квантовое число, которое сохраняется при лептонном взаимодействии. У лептонов заряд равен +1, у антилептонов — -1. Нейтрино и антинейтрино имеют нулевой электрический заряд, но не нулевой лептонный заряд. Лептонный заряд — это квантовое число, которое определяет, как частицы реагируют на лептонное поле. Нейтрино и антинейтрино очень слабо взаимодействуют с другими частицами и могут проходить сквозь материю без почти никаких столкновений.

Примеры цветных частиц — это кварки и глюоны. Кварки — это частицы, из которых состоят протоны, нейтроны и другие адроны. Глюоны — это частицы, которые передают сильное взаимодействие между кварками. У каждого кварка и глюона есть своя античастица, которая имеет противоположный цветовой заряд. Цветовой заряд — это квантовое число, которое приписывается цветным частицам. Это не то же самое, что цвет в обычном смысле слова, а просто способ обозначить разные состояния частиц. Цветовой заряд может принимать три значения: красный, зеленый или синий, а также их антицвета: антикрасный, антизеленый или антисиний. Цветные частицы обмениваются глюонами и при этом меняют свой цвет. Чтобы быть стабильными, цветные частицы должны образовывать бесцветные комбинации: например, барионы из трех кварков разных цветов или мезоны из кварка и антикварка одинаковых цветов.

Автор не входит в состав редакции iXBT.com (подробнее »)

Об авторе

Также предлагаю ознакомиться:
Автор Ruby Rougarou ПА Рейтинг +220.60
Блог Оффтопик 352 3477 RSS Вступить Подписаться
Не упускай интересное! Подпишись на нас в ВК и Telegram.

Пожаловаться на комментарий

Насколько я знаю, протон не может напрямую провзаимодействовать с электроном и превратится в нейтрон. Любой заряд меняется только при взаимодействии частицы с античастицей. А лептон не является античастицей кварка. Проще сказать так. Любая пара частица-античастица превращается в соответствующий взаимодействию бозон. Этот бозон при соответствующем взаимодействии может поменять заряд другой частицы на разницу заряда между частицей и античастицей, из которых как бы состоит. Важно при этом понимать, что это только для фотона все легко и просто. Электрон + позитрон = частица с 0 зарядом. Некоторые частицы не являются независимыми частицами. Они являются состояниями одной и той же частицы. Частицы расслаиваются на несколько состояний в результате калибровочных преобразований. Так например нейтрино — лишь другое состояние электрона. Именно поэтому возможно объединение электрона с электронным антинейтрино, не смотря на принцип Паули. Это ничто иное, как W- бозон. Вот он может поменять заряд кварка. С цветными частицами все еще интереснее. Это по сути 3 состояния одной и той же частицы. И такие частицы могут объединяться по 3 в обход принципа Паули. Это и есть ничто иное, как протон, нейтрон и т.д. Но они так же могут объединяться с частицами с анти-цветом по 2. Это так называемые мезоны. Из за конфайнмента цветные частицы в свободном состоянии не наблюдаются. Только как пары цвет-антицвет или как комбинация всех трех цветов (белый цвет). Глюоны — по сути пары частица-античастица разных цветов. Они способны менять заряд и цвет кваков. Если короче, тут все очень просто. Известно всего 3 взаимодействия. Все 3 возникают в результате умножения волновой функции на величину с единичной амплитудой, что не меняет вероятность обнаружить частицу в том или ином состоянии. Это так называемое унитарное преобразование. Благодаря калибровочным полям эта величина может быть не одинаковой во всех точках константой. Так возникают калибровочные взаимодействия. В простейшем случае это просто комплексное число. Так возникает самое простое взаимодействие — электромагнитное. Но так же возможно умножение на комплексные матрицы 2х2 и 3х3. Может бывает и больше. Как и в случае с фермионами, которые возникают в результате расслоения частицы на 4 состояния (положительный и отрицательный спин, частица и античастица), при этом возникает расслоение частицы на 2 и 3 состояния соответственно. Если частица участвует в обоих взаимодействиях — то на 6. На пример u и d кварки 3х цветов — итого 6 частиц. Пары частица-античастица дают бозоны. Они способны менять заряд других частиц на величину разницы между своими зарядами. Например частица с красным цветом и синим антицветом может поменять цвет кварка с синего на красный. Когда зарядов всего два, фокус не срабатывает, т.к. бозон оказывается зарядово-нейтральным. Так происходит с фотоном. Частицы типа мюона или тау-лептна — не отдельные частицы, а просто возбужденные состояния тех же частиц с повышенной энергией.

Неправильно пишете. Совсем.
Придется заняться ликбезом. Автору тоже не повредит.
‐———-
Стандартная модель (не будем усложнять картину струнами и суперами) определяет взаимодействия каких частиц с какими возможны. В ней сейчас есть три поколения лептонов и кварков плюс переносящие взаимодействия калибровочные бозоны (фотон, два W, Z, и восемь глюонов). Фотоны взаимодействуют со всеми частицами, имеющими электрический заряд, глюоны — с «цветными» частицами, а слабые — вообще со всеми и друг с другом. К примеру, два фотона могут дать пару W.
В поколениях лептонов — пары электрон плюс свое нейтрино, мюон со своим нейтрино и таон со своим нейтрино. Поколения кварков — (u,d), (c s), (t b).
Практически все частицы имеют свои античастицы. Например, у электрона — позитрон, у электронного нейтрино — электронное антинейтрино и т.д. Есть несколько истинно нейтральных частиц, у которых античастица совпадает с самой частицей — это фотон, Z-бозон и два глюона.

Основная проблема объяснений в стиле «копи-паста из Википедии» в том, что стороннему человеку все равно ничего не понятно. Надо копать глубже. Все вокруг — волны. Частицы — порции этих волн, возникающие в результате того самого квантования, т.е. того факта, что при измерении «плотность» материи, пропорциональная интенсивности волн, всегда получается кратной целому числу порций. Есть волновое уравнение. Оно описывает состояния волн. Есть всего два способа его решить. Т.е. по сути «базовых» частиц существует всего две. Один — традиционный, просто решить и все. Этот способ дает в ответе бозоны. Второй — парадоксальный, по важности чем то сродни изобретению комплексных чисел, т.к. их изобретение показало, что математика возможна не только для действительных чисел, но и для более сложных объектов. Изобрести такие новые математические объекты, для которых обычный квадрат равен скалярному произведению. И тогда можно будет извлечь корень квадратный из скалярного произведения так, что ответ имел линейные свойства. Так получаются фермионы. Но из за того, что такими свойствами обладают только матрицы 4×4, фермионы должны быть 4х мерными векторами. Т.е. тут уже сразу происходит расслоение состояния частицы на 4 разных. Это частицы с положительной и отрицательной энергией — частицы и античастицы. И (так вообще не пишут, но мне так больше нравится) частицы с отрицательным и положительным импульсом. Прикол тут в том, что импульс — векторная величина. А потому смена его знака на минус ни на что особо не влияет. Ну летит частица в противоположную сторону. Мы этого даже бы не заметили. Но есть такая штука как спин. Очень запутанная вещь. На самом деле к вращению никакого отношения не имеет. Просто выражает тот факт, что частица не симметрична относительно вращения, т.е. что у нее есть какая-то ориентация в пространстве, которая сохраняется. Так вот его знак меняется при смене знака импульса. Просто потому, что знак импульса влияет на взаимодействие с магнитным полем. А дальше есть 3 калибровочных взаимодействия. Тут есть некоторые допущения, которые на самом деле вызывают определенный дискомфорт. Что такое калибровка? Это когда наблюдаемое состояние частицы не зависит от некоторого параметра, так что считается, что этот параметр можно выбрать произвольно. Но это в голой математике можно сделать что то произвольно и ничего не поменяется. В реальном физическом мире что то все равно поменяется. Так вот. Можно умножить волновую функцию на «единицу» и ничего при этом не поменяется. Но это только если умножить на константу. Если умножить на функцию от координат и времени, то ничего не поменяется в той же системе координат, в которой это сделано. Но поменяется в других системах координат. Например энергия и импульс получат прибавку, из за того, что частные производные от константы равны нулю, но не равны нулю частные производные от функции. И это было бы недопустимо, если бы не существовало поле-друг. Оно обладает калибровочной симметрией как раз относительно такой вот прибавки. Т.е. такая прибавка не меняет никакие наблюдаемые характеристики этого поля. И вот тут делается допущение, что при том же умножении этого поля на ту же «единицу», оно получает такую же прибавку, но только со знаком минус, что компенсирует прибавку к нашему исходному полю. Это делает возможным калибровочное взаимодействие. Поле способно не только иметь прибавку к энергии и импульсу. Поле-друг способно передавать их на расстояние. В простейшем случае, когда «единица» — это просто комплексное число, мы получаем электромагнитное поле. Дальше — больше. «Единицы» могут быть матрицами 2х2, 3х3 и т.д. Ненаблюдение взаимодействий с более высокими порядками объясняется их вырождением. Как и в случае со спином, это должно приводить к расслоению состояния частицы на 2 и 3 разных состояния. 2х2 — это слабое взаимодействие. Исходный прото-фермион расслаивается на две частицы — электрон и нейтрино. Итого уже 8 состояний. Частица/античастица, ± спин и электрон/нейтрино. Как обычно, комбинации частица+античастица дают бозоны. Т.к. частицы две, то бозонов получается 4. Электрон-нейтрино дают W+ и W-. Два нейтрино дают Z. Электрон-позитрон дают фотон. С 3х3 еще веселее. Происходит дополнительное расслоение еще на 3 частицы. С 3 цветами. Это кварки. Т.к. они так же участвуют в слабом взаимодействии, то они так же расслаиваются еще на две частицы. u и d кварки с зарядами, кратными 1/3. Итого 6 частиц. Всего частиц получается 4×6 = 24. Пары вида u-d с одним цветом дают мезоны. Пары вида u-u и d-d с разными цветами дают глюоны. Тройки нейтрального («белого») цвета дают адроны. Самый стабильный из них — протон. Нейтроны появляются в результате того, что надо скомпенсировать электростатическое отталкивание адронов в ядре. Т.е. надо, чтобы в ядре было больше сильно-взаимодействующих частиц, чем электростатически отталкивающихся. Бозон Хиггса — это пока что темный лес. Попытка решить проблему массы, которая в теории является потенциалом некого взаимодействия с каким-то скалярным полем. Одновременно делается попытка решить проблему несимметричности частиц при движении со скоростью меньше скорости света. Основные проблемы — почему вообще такое поле существует и почему оно везде одинаковое? Делается предположение, что его стабильное состояние находится вовсе не в 0 энергии. Из за потенциала вида «бутылочное горлышко» оно спонтанно переходит в состояние с ненулевой энергией.

Все вокруг — волны

Это пока. Потом ещё что-нибудь придумают)

Ну со струнами пока не выгорело. Я сам сталкивался с такими проблемами, когда в голове возникает идея, как можно что то очень сильно упростить. Начинаешь упрощать и наталкиваешься то на одну проблему, то на другую. В итоге приходится лепить костыли. А потом вдруг оказывается, что из за вороха этих костылей решение по сложности оказалось таким же, если не хуже. А ты просто потратил время зря. Струны просто более элегантно решают проблему, которую всем подкинул товарищ Фейнман. У него в диаграммах Фейнмана преобразование частиц происходит мгновенно в одной точке. Соответственно получается, что при интегрировании по всему пространству таких преобразований может быть бесконечное количество. И они дают расходимости, которые приходится устранять нормировками, что не всегда удается сделать как следует. Проблема решается, если считать, что частица обладает неким конечным объемом. Но на самом деле это просто костыль. Решение должно быть немного другим. Частица скорее всего не превращается в другие бесконечное количество раз. Скорее всего она находится в суперпозиции этих состояний и просто обнаруживается в них с определенной вероятностью.

А что делать с тем же Фейнманом, показавшим, что бесконечности вполне нормально друг друга компенсируют? Иначе не получилась бы та самая «перенормировка».

Оцените статью
TutShema
Добавить комментарий