На что расходуется мощность источника тока

При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.

При прохождении заряда (q) по участку цепи электрическое поле будет совершать работу: (A=qcdot U), где (U) — напряжение электрического поля, (A) — работа, совершаемая силами электрического поля по перемещению заряда (q) из одной точки в другую.

Для выражения любой из этих величин можно использовать приведённый ниже рисунок.
Рис. (1). Зависимость между работой, напряжением и зарядом

Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда: q = I ⋅ t .

Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку: A = U ⋅ q .

Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи: A = U ⋅ I ⋅ t .

Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.

3.png

Рис. (2). Зависимость между работой, силой тока и временем прохождения заряда
Единицы измерения величин:
работа электрического тока ([A]=1) Дж;
напряжение на участке цепи ([U]=1) В;
сила тока, проходящего по участку ([I]=1) А;
время прохождения заряда (тока) ([t]=1) с.

Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.

Рис. (3). Схема и часы для измерения
I = 1 , 2 А U = 5 В t = 1 , 5 мин = 90 с А = U ⋅ I ⋅ t = 5 ⋅ 1 , 2 ⋅ 90 = 540 Дж
Обрати внимание!
Работа чаще всего выражается в килоджоулях или мегаджоулях.

(1) кДж = 1000 Дж или (1) Дж = (0,001) кДж;
(1) МДж = 1000000 Дж или (1) Дж = (0,000001) МДж.

Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.

soe_52_60_11_sh.jpg

Рис. (4). Электросчетчик

Механическая мощность численно равна работе, совершённой телом в единицу времени: N = А t . Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока, A = U ⋅ I ⋅ t , разделить на время.

Мощность электрического тока обозначают буквой (Р):
P = A t = U ⋅ I ⋅ t t = U ⋅ I . Таким образом:
Мощность электрического тока равна произведению напряжения на силу тока: P = U ⋅ I .

Из этой формулы можно определить и другие физические величины.

Урок 261. Потери энергии в ЛЭП. Условие согласования источника тока с нагрузкой


Для удобства можно использовать приведённый ниже рисунок.

Рис. (5). Зависимость между мощностью, напряжением и силой тока
За единицу мощности принят ватт: (1) Вт = (1) Дж/с.
Из формулы P = U ⋅ I следует, что

(1) ватт = (1) вольт ∙ (1) ампер, или (1) Вт = (1) В ∙ А.
Обрати внимание!

Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
(1) гВт = (100) Вт или (1) Вт = (0,01) гВт;
(1) кВт = (1000) Вт или (1) Вт = (0,001) кВт;
(1) МВт = (1 000 000) Вт или (1) Вт = (0,000001) МВт.

Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.
Рис. (6). Схема

Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:

I = 1 , 2 А U = 5 В P = U ⋅ I = 5 ⋅ 1 , 2 = 6 Вт .

Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.

В зависимости от сферы применения у них различаются пределы измерения.
Аналоговый ваттметр
Аналоговый ваттметр
Аналоговый ваттметр
Цифровой ваттметр

0007-004-Vattmetr-pribor-dlja-izmerenija-moschnosti.jpg

791838.jpeg

c301 (1).jpg

0987.jpg

Рис. (7). Приборы для измерения

Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.

1.pngJauda1.png

Рис. (8). Лампы различной мощности в цепи

Сила тока в лампочке мощностью (25) ватт будет составлять (0,1) А. Лампочка мощностью (100) ватт потребляет ток в четыре раза больше — (0,4) А. Напряжение в этом эксперименте неизменно и равно (220) В. Легко можно заметить, что лампочка в (100) ватт светится гораздо ярче, чем (25)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в (4) раза больше, потребляет в (4) раза больше тока. Значит:

Обрати внимание!
Мощность прямо пропорциональна силе тока.

Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение (110) В и (220) В.

2_1.png Jauda2.png

Рис. (8). Лампа, подключенная к источнику тока с различным напряжением

Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:

Обрати внимание!
Мощность зависит от напряжения.
Рассчитаем мощность лампочки в каждом случае:

I = 0 , 2 А U = 110 В P = U ⋅ I = 110 ⋅ 0 , 2 = 22 ВтI = 0,4 А U = 220 В P = U ⋅ I = 220 ⋅ 0,4 = 88 Вт .

Можно сделать вывод о том, что при увеличении напряжения в (2) раза мощность увеличивается в (4) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).

dsc_0264.jpg79616800.jpg2642_0.jpg

На что расходуется мощность источника тока?

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,672
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Активная и реактивная мощность

При работе электрического оборудования следует рассматривать полную мощность. Она показывает работу, которая проводится в единицу времени (в СИ в этом качестве рассматривается 1 секунда). При этом нужно помнить, что полная мощность складывается из активной и реактивной мощности.

Это разделение связано с используемым сопротивлением. Если электрические заряды преодолевают активное сопротивление, мощность также является активной. Она, как правило, относится к выполнению полезной работы.

При наличии переменного тока в электрической цепи присутствует реактивное сопротивление. Оно связано с работой электромагнитного поля и фактически сводится к периодическим изменениям, при которых энергия регулярно перетекает из одной формы в другую, практически не расходуясь.

В бытовых приборах и промышленном оборудовании в большинстве случаев присутствуют оба вида мощности. Активная играет основную роль при использовании постоянного тока или в тех случаях, когда её доля в общей мощности относительно высока.

Обычно в технической документации указывается параметр cosφ. Он может принимать значения от 0 до 1 включительно. Его величина показывает долю активной мощности в полной. Она будет высокой, например, в электронагревательных приборах, где значительная часть энергии тратится на выполнение полезной работы по обогреву помещения.

Надо учитывать, что наличие реактивной мощности оказывает разрушительное действие на прибор. Это может быть, например, связано с разрушением изоляции проводов и кабелей, с повышением риска возникновения короткого замыкания или с порчей оболочек электроприводов или трансформаторов.

Для получения полной мощности применяется векторное сложение активной и реактивной мощности. Её величину вычисляют по теореме Пифагора как длину гипотенузы прямоугольного треугольника, в котором катетами являются активная и реактивная мощности.

Треугольник мощностей

Как определяется мощность

Эта величина определяется на основе работы, выполненной при перемещении заряда. Мощность равна частному от деления её величины на потраченное для этого время. Из курса физики известно, что работу можно выразить как произведение разности потенциалов на перемещаемый заряд. Для вычисления заряда можно применить следующую формулу:

Формула для определения заряда

На основе сказанного можно привести такое равенство:

Формула работы

Из формулы видно, что мощность можно выразить как произведение напряжения и силы тока. Её можно преобразовать с использованием закона Ома:

Закон ома для участка цепи

Подставив это выражение в формулу мощности, выводят эквивалентные формы, которые могут быть более удобными в некоторых ситуациях.

Эквивалентные формулы для мощности

Например, при рассмотрении последовательного соединения удобной будет формула с использованием силы тока и напряжения. Это связано с тем, что сила электротока на рассматриваемом участке является одинаковой.

При параллельном соединении одинаковым на различных участках будет электронапряжение. В данном случае производить вычисления проще с использованием формулы, которая выражает мощность через разницу потенциалов и сопротивление.

В международной системе измерений для мощности используется ватт. Иногда применяют эквивалентную единицу вольт*ампер. Широко используются значения, которые выражаются в единицах, кратных ваттам. В качестве примера можно привести киловатт и мегаватт, которые соответствуют тысяче и миллиону ватт соответственно.

У большинства электроприборов, используемых в быту, мощность находится в определённых пределах, которые примерно соответствуют значениям, указанным в следующей таблице:

Мощность бытовых электроприборов

В прошлом в качестве единицы измерения мощности активно использовалась лошадиная сила. Для ее выражения через ватты нужно применять следующую формулу:

Определение лошадиной силы

Хотя классической единицей измерения энергии или выполненной работы является джоуль, для электрических приборов чаще используется ватт*час.

При описании электрических устройств или деталей часто указывают предельную мощность. В технической документации также может быть указана номинальная мощность оборудования. Режим работы устройства в этом случае считается оптимальным. Если реальная мощность будет выше, то это означает, что прибор эксплуатируется очень интенсивно.

Сказанное можно пояснить на следующем примере. Допустим, речь идёт о резисторе на 500 Ом. Пусть в технической документации сказано, что предельно допустимая мощность при его использовании составляет 10 Вт. В этом случае предельно допустимое напряжение определяется по формуле:

Формула для расчёта мощности

Из этого выражения можно найти напряжение. Для него будет правильным следующее равенство:

Вычисление предельного напряжения

Подставляя конкретные значения, получаем, что квадратный корень нужно извлечь из произведения 500 * 10 = 5000. Он будет примерно равен 70.7. Таким образом, предельно допустимым напряжением для этого резистора будет 70.7 В.

Иногда возникает необходимость практически измерить мощность. Это можно сделать с помощью ваттметра.

Ваттметр

Для определения мощности также используют амперметр и вольтметр. Первый присоединяют последовательно, второй — параллельно. Получив значения силы тока и напряжения, на их основе производят вычисления для определения мощности.

Использование амперметра и вольтметра

Мощность и кпд источника электрической энергии.

Мощность источника определяется соотношением:

Мощность потребителя определяется соотношением:

Коэффициент полезного действия КПД электрической цепи η определяется отношением мощности потребителя к мощности источника:

Закон Джоуля — Ленца

Ток, протекая по проводнику, нагревает его (в этом случае электрическая энергия преобразуется в тепловую). Количество выделенного тепла будет определяться количеством электрической энергии, затраченной в этом проводнике.

Коэффициент 0,24 (электротермический эквивалент) устанавливает зависимость между электрической и тепловой энергией.

Режимы работы электрических цепей.

В электрических цепях все основные элементы делятся на активные и пассивные. Активными считаются элементы, в которых преобразование энергии сопровождается возникновением ЭДС (аккумуляторы, генераторы). Элементы, в которых ЭДС не возникает, называются пассивными.

Параметры электрических цепей:

1.Ток в замкнутой цепи:

2.Напряжение на клеммах источника:

3.Падение напряжения на сопротивлении источника:

4.Полезная мощность (мощность потребителя):

Электрические цепи могут работать в трех режимах:

· режим холостого хода (цепь разомкнута) R =∞:

Iхх =0, U=E, U0=0, P=0.

· режим короткого замыкания R =0:

· режим нагрузки R ≠0:; ; ;.

Условие максимальной отдачи мощности: полезная мощность максимальна, когда сопротивление потребителя R станет равным внутреннему сопротивлению источника R0.

КПД при максимальной отдаче мощности равно 50%, к 100% КПД приближается в режиме, близком к холостому ходу.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Мощность постоянного тока

Мощность постоянного тока

Мощность – это работа, произведенная за единицу времени. Электрическая мощность равна произведению тока на напряжение: P=U∙I. Отсюда можно вывести другие формулы для мощности:

Единицу измерения мощности получим, подставив в формулу единицы измерения напряжения и тока:

Единица измерения электрической мощности, равная 1 ВА, называется ватом (Вт). Название вольт-ампер (ВА) используется в технике переменного тока, но только для измерения полной и реактивной мощности.

Единицы измерения электрической и механической мощности связаны следующими соотношениями:

1 Вт =1/9,81 кГ•м/сек ≈1/10 кГ•м/сек;

1 кГ•м/сек =9,81 Вт ≈10 Вт;

1 л.с. =75 кГ•м/сек =736 Вт;

1 кВт =102 кГ•м/сек =1,36 л.с.

Если не учитывать неизбежных потерь энергии, то двигатель мощностью 1 кВт может перекачивать каждую секунду 102 л воды на высоту 1 м или 10,2 л воды на высоту 10 м.

1. Нагревательный элемент электрической печи на мощность 500 Вт и напряжение 220 В выполнен из проволоки высокого сопротивления. Рассчитать сопротивление элемента и ток, который через него проходит (рис. 1).

Ток найдем по формуле электрической мощности P=U∙I,

откуда I=P/U=(500 Bm)/(220 B)=2,27 A.

Сопротивление рассчитывается по другой формуле мощности: P=U^2/r,

откуда r=U^2/P=(220^2)/500=48400/500=96,8 Ом.

Схема к примеру 1

Схема к примеру 1

2. Какое сопротивление должна иметь спираль (рис. 2) плитки при токе 3 А и мощности 500 Вт?

Плитка

Для этого случая применим другую формулу мощности: P=U∙I=r∙I∙I=r∙I^2;

отсюда r=P/I^2 =500/3^2 =500/9=55,5 Ом.

3. Какая мощность превращается в тепло при сопротивлении r=100 Ом, которое подключено к сети напряжением U=220 В (рис. 3)?

Схема к примеру 3

4. В схеме на рис. 4 амперметр показывает ток I=2 А. Подсчитать сопротивление потребителя и электрическую мощность, расходуемую в сопротивлении r=100 Ом при включении его в сеть напряжением U=220 В.

Схема к примеру 4

P=U∙I=220∙2=440 Вт, или P=U^2/r=220^2/110=48400/110=440 Вт.

5. На лампе указано лишь ее номинальное напряжение 24 В. Для определения остальных данных лампы соберем схему, показанную на рис. 5. Отрегулируем реостатом ток так, чтобы вольтметр, подключенный к зажимам лампы, показывал напряжение Uл=24 В. Амперметр при этом показывает ток I=1,46 А. Какие мощность и сопротивление имеет лампа и какие потери напряжения и мощности возникают на реостате?

Рисунок и схема к примеру

Мощность лампы P=Uл∙I=24∙1,46=35 Вт.

Ее сопротивление rл=Uл/I=24/1,46=16,4 Ом.

Падение напряжения на реостате Uр=U-Uл=30-24=6 В.

Потери мощности в реостате Pр=Uр∙I=6∙1,46=8,76 Вт.

6. На щитке электрической печи указаны ее номинальные данные (P=10 кВт; U=220 В).

Определить, какое сопротивление представляет собой печь и какой ток проходит через нее при работе P=U∙I=U^2/r;

r=U^2/P=220^2/10000=48400/10000=4,84 Ом; I=P/U=10000/220=45,45 А.

Нагревательные элементы электрической печи

7. Каково напряжение U на зажимах генератора, если при токе 110 А его мощность равна 12 кВт (рис. 7)?

Так как P=U∙I, то U=P/I=12000/110=109 В.

8. На схеме на рис. 8 показана работа электромагнитной токовой защиты. При определенном токе электромагнит ЭМ, который удерживается пружиной П, притянет якорь, разомкнет контакт К и разорвет цепь тока. В нашем примере токовая защита разрывает токовую цепь при токе I≥2 А. Сколько ламп по 25 Вт может быть одновременно включено при напряжении сети U=220 В, чтобы ограничитель не сработал?

Защита срабатывает при I=2 А, т. е. при мощности P=U∙I=220∙2=440 Вт.

Разделив общую мощность одной лампы, получим: 440/25=17,6.

Одновременно могут гореть 17 ламп.

9. Электрическая печь имеет три нагревательных элемента на мощность 500 Вт и напряжение 220 В, соединенных параллельно.

Каковы общее сопротивление, ток и мощность при работе печи (рис.91)?

Общая мощность печи P=3∙500 Вт =1,5 кВт.

Результирующий ток I=P/U=1500/220=6,82 А.

Результирующее сопротивление r=U/I=220/6,82=32,2 Ом.

Ток одного элемента I1=500/220=2,27 А.

Сопротивление одного элемента: r1=220/2,27=96,9 Ом.

10. Подсчитать сопротивление и ток потребителя, если ваттметр показывает мощность 75 Вт при напряжении сети U=220 В (рис.10).

Так как P=U^2/r, то r=U^2/P=48400/75=645,3 Ом.

Ток I=P/U=75/220=0,34 А.

11. Плотина имеет перепад уровней воды h=4 м. Каждую секунду через трубопровод на турбину попадает 51 л воды. Какая механическая мощность превращается в генераторе в электрическую, если не учитывать потерь (рис. 11)?

Механическая мощность Pм=Q∙h=51 кГ/сек ∙4 м =204 кГ•м/сек.

Отсюда электрическая мощность Pэ=Pм:102=204:102=2 кВт.

12. Какую мощность должен иметь двигатель насоса, перекачивающего каждую секунду 25,5 л воды с глубины 5 м в резервуар, расположенный на высоте З м? Потери не учитываются (рис. 12).

Общая высота подъема воды h=5+3=8 м.

Механическая мощность двигателя Pм=Q∙h=25,5∙8=204 кГ•м/сек.

Электрическая мощность Pэ=Pм:102=204:102=2 кВт.

13. Гидроэлектростанция получает из водохранилища на одну турбину каждую секунду 4 м3 воды. Разница между уровнями воды в водохранилище и турбине h=20 м. Определить мощность одной турбины без учета потерь (рис. 13).

Механическая мощность протекающей воды Pм=Q∙h=4∙20=80 т/сек•м; Pм=80000 кГ•м/сек.

Электрическая мощность одной турбины Pэ=Pм:102=80000:102=784 кВт.

14. У двигателя постоянного тока с параллельным возбуждением обмотка якоря и обмотка возбуждения соединены параллельно. Обмотка якоря имеет сопротивление r=0,1 Ом, а ток якоря I=20 А. Обмотка возбуждения имеет сопротивление rв=25 Ом, а ток возбуждения равен Iв=1,2 А. Какая мощность теряется в обеих обмотках двигателя (рис. 14)?

Потери мощности в обмотке якоря P=r∙I^2=0,1∙20^2=40 Вт.

Потери мощности в обмотке возбуждения

Общие потери в обмотках двигателя P+Pв=40+36=76 Вт.

15. Электроплитка на напряжение 220 В имеет четыре переключаемые ступени нагрева, что достигается путем различных включений двух нагревательных элементов с сопротивлениями r1 и r2, как это показано на рис. 15.

Определить сопротивления r1 и r2, если первый нагревательный элемент имеет мощность 500 Вт, а второй 300 Вт.

Так как мощность, выделяемая в сопротивлении, выражается формулой P=U∙I=U^2/r, то сопротивление первого нагревательного элемента

а второго нагревательного элемента r2=U^2/P2 =220^2/300=48400/300=161,3 Ом.

В положении ступени IV сопротивления соединяются последовательно. Мощность электроплитки в этом положении равна:

P3=U^2/(r1+r2 )=220^2/(96,8+161,3)=48400/258,1=187,5 Вт.

В положении ступени I нагревательные элементы соединены параллельно и результирующее сопротивление равно: r=(r1∙r2)/(r1+r2)=(96,8∙161,3)/(96,8+161,3)=60,4 Ом.

Мощность плитки в положении ступени I: P1=U^2/r=48400/60,4=800 Вт.

Эту же мощность получим, сложив мощности отдельных нагревательных элементов.

16. Лампа с вольфрамовой нитью рассчитана на мощность 40 Вт и напряжение 220 В. Какие сопротивление и ток имеет лампа в холодном состоянии и при рабочей температуре 2500 °С?

Мощность лампы P=U∙I=U^2/r.

Отсюда сопротивление нити лампы в горячем состоянии rt=U^2/P=220^2/40=1210 Ом.

Сопротивление холодной нити (при 20 °С) определим по формуле rt=r∙(1+α∙∆t),

откуда r=rt/(1+α∙∆t)=1210/(1+0,004∙(2500-20) )=1210/10,92=118 Ом.

Через нить лампы в горячем состоянии проходит ток I=P/U=40/220=0,18 А.

Ток при включении равен: I=U/r=220/118=1,86 А.

При включении ток примерно в 10 раз больше, чем ток горячей лампы.

17. Каковы потери напряжения и мощности в медном контактном проводе электрифицированной железной дороги (рис. 16)?

Провод имеет сечение 95 мм2. Двигатель электропоезда потребляет ток 300 А на расстоянии 1,5 км от источника тока.

Потеря (падение) напряжения в линии между точками 1 и 2 Uп=I∙rп.

Сопротивление контактного провода rп=(ρ∙l)/S=0,0178∙1500/95=0,281 Ом.

Падение напряжения в контактном проводе Uп=300∙0,281=84,3 В.

Напряжение Uд на зажимах двигателя Д будет на 84,3 В меньше, чем напряжение U на зажимах источника Г.

Падение напряжения в контактном проводе во время движения электропоезда меняется. Чем дальше электропоезд удаляется от источника тока, тем длиннее линия, а значит, больше ее сопротивление и падение напряжения в ней. Ток по рельсам возвращается к заземленному источнику Г. Сопротивление рельсов и земли практически равно нулю.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

§ 13. Работа и мощность электрического тока

Электрическая энергия. В природе и технике непрерывно происходят процессы превращения энергии из одного вида в другой (рис. 30). В источниках электрической энергии различные виды энергии превращаются в электрическую энергию. Например, в электрических генераторах 1, приводимых во вращение каким-либо механизмом, происходит превращение в электрическую энергию механической, в термогенераторах 2 — тепловой, в аккумуляторах 9 при их разряде и гальванических элементах 10 — химической, в фотоэлементах 11 — лучистой.

Приемники электрической энергии, наоборот, электрическую энергию превращают в другие виды энергии — тепловую, механическую, химическую, лучистую и пр. Например, в электродвигателях 3 электрическая энергия превращается в механическую, в электронагревательных приборах 5 — в тепловую, в электролитических ваннах 8 и аккумуляторах 7 при их заряде — в химическую, в электрических лампах 6 — в лучистую и тепловую, в антеннах 4 радиопередатчиков — в лучистую.

Рис. 30. Пути превращения энергии из одного вида в другой

Рис. 30. Пути превращения энергии из одного вида в другой

Мерой количества энергии является работа. Работа W, совершаемая электрическим током за время t при известном напряжении U силе тока I, равна произведению напряжения на силу тока и на время его действия:

W = UIt (29)

Работа, совершаемая электрическим током силой 1 А при напряжении 1 В в течение 1 с, принята за единицу электрической энергии. Эта единица называется джоулем (Дж). Джоуль, который называют также ватт-секундой (Вт*с), — очень маленькая единица измерения, поэтому на практике для измерения электрической энергии приняты более крупные единицы — ватт-час (1 Вт*ч = 3600 Дж), киловатт-час (1 кВт*ч = 1000 Вт*ч = 3,6*10 6 Дж), мегаватт-час (1 МВт*ч=1000 кВт*ч=3,6*10 9 Дж).

Электрическая мощность. Энергия, получаемая приемником или отдаваемая источником тока в течение 1 с, называется мощностью. Мощность Р при неизменных значениях U и I равна произведению напряжения U на силу тока I:

P = UI (30)

Используя закон Ома для определения силы тока и напряжения в зависимости от сопротивления R и проводимости G, можно получить и другие выражения для мощности. Если заменить в формуле (30) напряжение U=IR или силу тока I=U/R=UG, то получим

P = I 2 R (31)

P = U 2 /R = U 2 G (32)

Следовательно, электрическая мощность равна произведению квадрата силы тока на сопротивление, или электрическая мощность квадрату напряжения, поделенному на сопротивление, либо квадрату напряжения, умноженному на проводимость.

Мощность, которая создается силой тока 1 А при напряжении 1 В, принята за единицу измерения мощности и называется ватт (Вт). В технике мощность измеряют более крупными единицами: киловаттами (1 кВт =1000 Вт) и мегаваттами (1 МВт=1 000 000 Вт).

Потери энергии и коэффициент полезного действия. При превращении электрической энергии в другие виды энергии или наоборот не вся энергия превращается в требуемый вид энергии, часть ее непроизводительно затрачивается (теряется) на преодоление трения в подшипниках машин, нагревание проводов и пр. Эти потери энергии неизбежны в любой машине и любом аппарате.

Отношение мощности, отдаваемой источником или приемником электрической энергии, к получаемой им мощности, называется коэффициентом полезного действия источника или приемника. Коэффициент полезного действия (к. п. д.)

Р2 — отдаваемая (полезная) мощность;
Р1 — получаемая мощность;
?Р — потери мощности.

К. п. д. всегда меньше единицы, так как в любой машине и любом аппарате имеются потери энергии. Иногда к. п. д. выражают в процентах. Так, тяговые двигатели электровозов и тепловозов имеют к. п. д. 86—92 %, мощные трансформаторы — 96—98 %, тяговые подстанции — 94—96 %, контактная сеть электрифицированных железных дорог — около 90 %, генераторы тепловозов — 92—94 %.
Рассмотрим в качестве примера распределение энергии в электрической цепи (рис. 31). Генератор 1, питающий эту цепь, получает от первичного двигателя 2 (например, дизеля) механическую мощность Рmx = 28,9 кВт, а отдает электрическую мощность Рэл = 26 кВт (2,9 кВт составляют потери мощности в генераторе). Поэтому он имеет к. п. д. ? ген = Рэл/Рmx = 26/28,9 = 0,9.

Мощность Рэл = 26 кВт, отдаваемая генератором, расходуется на питание электрических ламп (6 кВт), на нагрев электрических плиток (7,2 кВт) и на питание электродвигателя (10,8 кВт). Часть мощности ? P пр = 2 кВт теряется на бесполезный нагрев проводов, соединяющих генератор с потребителями.

Рис. 31. Схема преобразования энергии в электрической цепи

Рис. 31. Схема преобразования энергии в электрической цепи

В каждом приемнике электрической энергии также имеют место потери мощности. В электрическом двигателе 3 потери мощности составляют 0,8 кВт (он получает из сети мощность 10,8 кВт, а отдает только 10 кВт), поэтому к. п. д. ?дв = 10/10,8 = 0,925. Из мощности 6 кВт, полученной лампами, лишь незначительная часть идет на Создание лучистой энергии, большая часть ее бесполезно рассеивается в виде тепла. В электрической плитке на нагрев пищи расходуется не вся полученная мощность 7,2 кВт, так как часть созданного ею тепла рассеивается в окружающем пространстве. При рассмотрении электрических цепей наряду с определением токов и напряжений, действующих на отдельных участках, необходимо определять и передаваемую по ним мощность. При этом должен соблюдаться так называемый энергетический баланс мощностей. Это означает, что мощность, получаемая каким-либо устройством (источником тока или потребителем) или участком электрической цепи, должна быть равна сумме отдаваемой ими мощности и потерь мощности, которые возникают в данном устройстве или участке цепи.

Мощность и кпд источника электрической энергии.

Мощность источника определяется соотношением:

Мощность потребителя определяется соотношением:

Коэффициент полезного действия КПД электрической цепи η определяется отношением мощности потребителя к мощности источника:

Закон Джоуля — Ленца

Ток, протекая по проводнику, нагревает его (в этом случае электрическая энергия преобразуется в тепловую). Количество выделенного тепла будет определяться количеством электрической энергии, затраченной в этом проводнике.

Коэффициент 0,24 (электротермический эквивалент) устанавливает зависимость между электрической и тепловой энергией.

Режимы работы электрических цепей.

В электрических цепях все основные элементы делятся на активные и пассивные. Активными считаются элементы, в которых преобразование энергии сопровождается возникновением ЭДС (аккумуляторы, генераторы). Элементы, в которых ЭДС не возникает, называются пассивными.

Параметры электрических цепей:

1.Ток в замкнутой цепи:

2.Напряжение на клеммах источника:

3.Падение напряжения на сопротивлении источника:

4.Полезная мощность (мощность потребителя):

Электрические цепи могут работать в трех режимах:

· режим холостого хода (цепь разомкнута) R =∞:

Iхх =0, U=E, U0=0, P=0.

· режим короткого замыкания R =0:

· режим нагрузки R ≠0:; ; ;.

Условие максимальной отдачи мощности: полезная мощность максимальна, когда сопротивление потребителя R станет равным внутреннему сопротивлению источника R0.

КПД при максимальной отдаче мощности равно 50%, к 100% КПД приближается в режиме, близком к холостому ходу.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Оцените статью
TutShema
Добавить комментарий