Магнитное поле как образуется

Мы все знаем, что такое постоянные магниты. Магниты – это металлические тела, притягивающиеся к другим магнитам и к некоторым металлам. То, что располагается вокруг магнита и взаимодействует с окружающими предметами (притягивает или отталкивает некоторые из них), называется магнитным полем.

Источником любого магнитного поля являются движущиеся заряженные частицы. А направленное движение заряженных частиц называется электрическим током. То есть, любое магнитное поле вызывается исключительно электрическим током.

За направление электрического тока принимают направление движения положительно заряженных частиц. Если же движутся отрицательные заряды, то направление тока считается обратным движению таких зарядов. Представьте себе, что по кольцевой трубе течет вода. Но мы будем считать, что некий «ток» при этом движется в противоположном направлении. Электрический ток обозначается буквой I.

В металлах ток образуется движением электронов – отрицательно заряженных частиц. На рисунке ниже, электроны движутся по проводнику справа налево. Но считается, что электрический ток направлен слева направо.

Это произошло потому, что когда начали изучение электрические явления, не было известно, какими именно носителями чаще всего переносится ток.

Если мы посмотрим на этот проводник с левой стороны, так, чтобы ток шел «от нас», то магнитное поле этого тока будет направлено вокруг него по часовой стрелке.

Если рядом с этим проводником расположить компас, то его стрелка развернется перпендикулярно проводнику, параллельно «силовым линиям магнитного поля» — параллельно черной кольцевой стрелке на рисунке.

Если мы возьмем шарик, имеющий положительный заряд (имеющий дефицит электронов) и бросим его вперед, то вокруг этого шарика появится точно такое же кольцевое магнитное поле, закручивающееся вокруг него по часовой стрелке.

Ведь здесь тоже имеет место направленное движение заряда. А направленное движение зарядов есть электрический ток. Если есть ток, вокруг него должно быть магнитное поле.

Движущийся заряд (или множество зарядов – в случае электрического тока в проводнике) создает вокруг себя «тоннель» из магнитного поля. Стенки этого «тоннеля» «плотнее» вблизи движущего заряда. Чем дальше от движущегося заряда, тем слабее напряженность («сила») создаваемого им магнитного поля. Тем слабее реагирует на это поле стрелка компаса.

Закономерность распределение напряженности магнитного поля вокруг его источника такая же, как закономерность распределения электрического поля вокруг заряженного тела – она обратно пропорциональна квадрату расстояния до источника поля.

Если положительно заряженный шарик перемещается по кругу, то кольца магнитных полей, образующихся вокруг него по мере его движения, суммируются, и мы получим магнитное поле, направленное перпендикулярно плоскости, в которой перемещается заряд:

Урок 19. Магнитное поле | Электромагнит

Магнитный «тоннель» вокруг заряда оказывается свернутым в кольцо и напоминает по форме тор (бублик).

Такой же эффект получается, если свернуть в кольцо проводник с током. Проводник с током, свернутый в многовитковую катушку называется электромагнитом. Вокруг катушки складываются магнитные поля движущихся в ней заряженных частиц — электронов.

А если заряженный шарик вращать вокруг его оси, то у него появится магнитное поле, как у Земли, направленное вдоль оси вращения. В данном случае током, вызывающим появление магнитного поля, является круговое движение заряда вокруг оси шарика – круговой электрический ток.

Здесь, по сути, происходит то же самое, что и при движении шарика по кольцевой орбите. Только радиус этой орбиты уменьшен до радиуса самого шарика.

Все сказанное выше справедливо и для шарика заряженного отрицательно, но его магнитное поле будет направлено в противоположную сторону.

Данный эффект был обнаружен в опытах Роуланда и Эйхенвальда. Эти господа регистрировали магнитные поля вблизи вращающихся заряженных дисков: рядом с этими дисками начинала отклоняться стрелка компаса. Направления магнитных полей в зависимости от знака заряда дисков и направления их вращения, показаны на рисунке:

При вращении незаряженного диска, магнитные поля не обнаруживались. Не было магнитных полей и вблизи неподвижных заряженных дисков.

Модель магнитного поля движущегося заряда

Чтобы запомнить направление магнитного поля движущегося положительного заряда, мы представим себя на его месте. Поднимем правую руку вверх, затем укажем ею направо, затем опустим ее вниз, затем укажем влево и вернем руку в исходное положение – вверх. Затем повторим это движение. Наша рука описывает круги по часовой стрелке. Теперь начнем движение вперед, продолжая вращать рукой. Движение нашего тела – аналог движения положительного заряда, а вращение руки по часовой стрелке – аналог магнитного поля заряда.

Теперь представьте себе, что вокруг нас находится тонкая и прочная эластичная паутина, похожая на струны пространства, которые мы рисовали, создавая модель электрического поля.

Когда мы движемся сквозь эту трехмерную «паутину», из-за вращения руки, она, деформируясь, смещается по часовой стрелке, образуя подобие спирали, словно бы наматываясь в катушку вокруг заряда.

Сзади, за нами, «паутина» восстанавливает свою правильную структуру. Примерно так можно представлять себе магнитное поле положительного заряда, движущегося прямо.

А теперь попробуйте двигаться не прямо вперед, а по кругу, например, поворачивая при ходьбе налево, при этом вращая рукой по часовой стрелке. Представьте себе, что вы движетесь через нечто, напоминающее желе. Из-за вращения вашей руки, внутри круга, по которому вы движетесь, «желе» будет смещаться вверх, образуя горб над центром круга. А под центром круга, образуется впадина из-за того, что часть желе сместилось вверх. Так можно представлять себе формирование северного (горб сверху) и южного (впадина снизу) полюсов при движении заряда по кольцу или его вращения.

Если при ходьбе вы будете поворачивать направо, то «горб» (северный полюс) сформируется снизу.

Аналогично можно сформировать представление о магнитном поле движущегося отрицательного заряда. Только вращать рукой нужно в противоположную сторону – против часовой стрелки. Соответственно, магнитное поле будет направлено в противоположную сторону. Просто каждый раз следите за тем, в какой сторону ваша рука выталкивает «желе».

Такая модель наглядно демонстрирует то, почему северный полюс одного магнита притягивается к южному полюсу другого магнита: «горб» одного из магнитов втягивается во «впадину» второго магнита.

И еще эта модель показывает, почему не существуют отдельных северных и южных полюсов магнитов, как бы мы их не разрезали – магнитное поле представляет собой вихревую (замкнутую) «деформацию пространства» вокруг траектории движущегося заряда.

В чём измеряется магнитное поле?

Магнитное поле является векторной величиной и для его измерения/определения нужно знать его направление и силу.

Для определения направления можно положить рядом с магнитным предметом магнитный компас. Таким образом, стрелка компаса остановится вдоль силовой линии.

Сила магнитного поля измеряется:

1. Либо в СИ в единицах Тесла (Тл) или микротесла (мкТл)

2. Либо в единицах Гаусс (Гс) или миллигаусс (мГс), до сих пор используется экспериментально.

  • 1 Тл = 10 000 Гс
  • 1 Гс = Тл
  • 1 мГс = 0,1 мкТл

Как создаётся магнитное поле?

Магнитные поля создаются движущимися электрически заряженными частицами, т.е. поле появляется там, где движутся электрические заряды. Например, пропуская электрический ток по проводнику.

Другой способ — комбинировать собственные магнитные поля электронов, что случается в некоторых материалах. Их называют постоянными магнитами (например, магнитики на наших холодильниках).

Если очень больший заряд будет двигаться с ещё большей скоростью, то и сила его магнитного поля тоже возрастёт.

Магнитные линии

Магнитные линии у прямолинейных элементов с высокой проводимостью тока имеют форму плотной концентрической окружности, центр которой находится на оси определенного проводника.

Замечание 2

Направление этих показателей возле проводников можно определить по правилу буравчика, которое интерпретируется следующим образом: если буравчик расположить так, что он будет постоянно ввинчиваться в движущийся проводник по направлению тока, тогда курс обращения самой рукоятки будет совпадать с назначением магнитных линий.

Правильное определение неоднородности и однородности является главной характеристикой магнитного поля. Эти составляющие, которые создаются при равных условиях одним током, будут иметь неоднозначную направленность и интенсивность в различных пространствах из-за движущихся магнитных свойств в данных веществах. Магнитная специфик окружающей среды характеризуются стабильной проницаемостью магнитов и измеряется физиками в генри на метр (г/м). В свойства исследуемого поля также можно отнести абсолютную магнитная проницаемость пустоты, которая называется магнитной постоянной.

Определение 2

Магнитная проницаемость – это определенное значение, которое определяет, как часто абсолютная магнитная проницаемость пространства будет отличаться от постоянной, относительной проницаемостью магнитов.

Магнитное поле оказывает непосредственное влияние на:

  • изменяющиеся электрические заряды;
  • вещества, посредством которых определяют проницаемость поля;
  • постоянные магниты – подразумевающие общий магнитный момент всех заряженных частиц.

В магнитном процессе силовые линии возникают при сближении стабильного магнита к бумажному листу, на который необходимо насыпать слой железных опилок.

Изменения магнитных свойств материалов

При увеличении постоянства силы тока до полноценного насыщения в катушке с ферромагнитным элементами и последующим ее исчезновением, кривая намагничивания не может совпадать с линией размагничивания. С нулевой, невидимой напряженностью индукция в такой среде не будет иметь значение, а получит некий показатель, именуемый в физике остаточной магнитной индукцией.

Ситуацию с уменьшением индукции в магнитном поле от намагничивающей интенсивности физики называют гистерезисом. Для полного размагничивания процесса в элементах сердечника необходимо предоставить обратной направленности ток, с помощью которого появится элемент напряженности. Для разных ферромагнитных частиц важен отрезок различной длины. Значение, при котором будет осуществляться конечное размагничивание материала, именуется коэрцитивной силой.

При дальнейшем повышении действия тока в катушке магнитная индукция начинает увеличиваться до уровня насыщения, однако с абсолютно другими направлениям линий. При полном размагничивании в противоположном направлении возможно получить остаточную индукцию, которая используется при разработке постоянных магнитов из элементов с большим коэффициентом остаточного магнетизма. С помощью имеющих способность к перемагничиванию веществ ученые создают создаются сердечники для электрических приборов и машин.

Магнитное поле

Физика

Магни́тное по́ле, магнитная составляющая электромагнитного поля ; физическое поле , оказывающее механическое силовое воздействие на движущиеся электрические заряды , на проводники , по которым течёт электрический ток , на постоянные магниты и другие физические объекты, обладающие магнитным моментом . Изменяющееся во времени магнитное поле создаёт переменное электрическое поле , которое, в свою очередь, создаёт переменное магнитное поле, что обеспечивает существование электромагнитных волн , в которых переменные электрические и магнитные поля взаимно поддерживают друг друга.

Термин «магнитное поле» ввёл в 1845 г. М. Фарадей , автор концепции физического поля – ключевого понятия современной физики, являющегося, по мнению А. Эйнштейна , самым важным физическим открытием со времён создания И. Ньютоном основ классической механики .

Силовой характеристикой магнитного поля является вектор магнитной индукции B , boldsymbol, B , с помощью которого определяются механические силы и вращательные моменты сил, действующие со стороны магнитного поля на движущиеся заряды, токи и тела, обладающие магнитным моментом. Магнитное поле также характеризуется вектором напряжённости магнитного поля H ; boldsymbol; H ; индукция и напряжённость магнитного поля, находящегося в изотропной среде, связаны выражением: H = B μ 0 μ , boldsymbol = frac<boldsymbol><mu_0 mu>, H = μ 0 ​ μ B ​ , где μ mu μ – магнитная проницаемость среды, μ 0 mu_0 μ 0 ​ – магнитная постоянная .

Источниками магнитного поля являются проводники с током, движущиеся заряды, физические объекты и тела, обладающие магнитным моментом . Для измерения характеристик магнитного поля используют различные магнитометры .

В технических приложениях магнитные поля по величине магнитной индукции B B B подразделяют на слабые (до 0,05 Тл), средние (0,05–4 Тл), сильные (4–100 Тл) и сверхсильные (свыше 100 Тл). Слабые и средние магнитные поля широко используются в радиотехнике и электронике , электротехнике и электроэнергетике . Их получают с помощью постоянных магнитов и электромагнитов (в том числе сверхпроводящих ).

Сильные магнитные поля используются в мощных электротехнических и электрофизических установках, в том числе в ускорителях заряженных частиц , в разрабатываемых энергетических установках управляемого термоядерного синтеза (проект ITER, International Termonuclear Energy Reactor). Для получения постоянного сильного магнитного поля (до 20–30 Тл) применяют сверхпроводящие соленоиды с дополнительным теплоотводом. Более сильные магнитные поля (до 160 Тл) удаётся получать только в течение коротких промежутков времени с помощью импульсных соленоидов, через которые пропускается мощный разрядный ток короткого замыкания , или с помощью магнитокумулятивных (взрывомагнитных) генераторов (до 1 0 3 10^3 1 0 3 Тл), в которых начальное магнитное поле очень быстро сжимается внутри проводящей оболочки, многократно возрастая в силу сохранения магнитного потока Φ = B S Phi = boldsymbol Φ = BS при взрывном уменьшении площади поперечного сечения S S S проводящей оболочки, заполненной магнитным полем.

Наблюдаемые природные магнитные поля имеют разные величины: магнитное поле Земли на её поверхности составляет около 5 ⋅ 1 0 – 5 5 cdot 10^ 5 ⋅ 1 0 –5 Тл, магнитное поле Юпитера – порядка
1 0 – 3 10^ 1 0 –3 Тл, магнитное поле внутри солнечных пятен составляет доли Тл, отдельные звёзды обладают магнитным полем с индукцией порядка нескольких Тл. Наибольшими магнитными полями обладают звёзды, находящиеся на конечном этапе своей эволюции, когда их размеры значительно уменьшаются (магнитокумулятивный механизм усиления магнитного поля). У белых карликов наблюдаются магнитные поля порядка 1 0 3 10^3 1 0 3 Тл, у нейтронных звёзд – порядка 1 0 7 10^7 1 0 7 Тл; у четырёх нейтронных звёзд (трёх в нашей Галактике и одной в её спутнике – Большом Магеллановом Облаке ) обнаружены магнитные поля порядка 1 0 11 10^ 1 0 11 Тл.

Опубликовано 20 января 2023 г. в 19:36 (GMT+3). Последнее обновление 20 января 2023 г. в 19:36 (GMT+3). Связаться с редакцией

Причины возникновения магнитных полей

Электрический ток, который является направленным движением ионов в электролитах и электронов в металлах, порождает магнитное поле.

Обрати внимание!

Существование магнитного поля связано с движением электрических отрицательных и положительных зарядов.

1 (3).png

Рис. (1). Кольцевые токи внутри вещества

Согласно планетарной модели в центре атома расположено ядро, вокруг которого вращаются электроны, образуя элементарные кольцевые токи внутри вещества. Если токи направлены одинаково, то магнитные поля, которые они создают, также совпадают по направлению, усиливая друг друга.

Тела, внутри и вокруг которых длительное время сохраняется магнитное поле, называются постоянными магнитами .

Обрати внимание!

Вещества, которые могут сильно притягиваться магнитами, называются ферромагнетиками . К ним относятся железо, никель, кобальт. Вещества, которые слабо притягиваются магнитами, — парамагнетики (алюминий, литий, магний, натрий, цезий, вольфрам). Д иамагнетики не могут притягиваться магнитом (цинк, медь, эбонит, золото, серебро, свинец, кремний, германий).

Действие магнитного поля на другие тела (магнитные стрелки, железные опилки) подтверждает его существование.

Магнитное поле

Физика

Магни́тное по́ле, магнитная составляющая электромагнитного поля ; физическое поле , оказывающее механическое силовое воздействие на движущиеся электрические заряды , на проводники , по которым течёт электрический ток , на постоянные магниты и другие физические объекты, обладающие магнитным моментом . Изменяющееся во времени магнитное поле создаёт переменное электрическое поле , которое, в свою очередь, создаёт переменное магнитное поле, что обеспечивает существование электромагнитных волн , в которых переменные электрические и магнитные поля взаимно поддерживают друг друга.

Термин «магнитное поле» ввёл в 1845 г. М. Фарадей , автор концепции физического поля – ключевого понятия современной физики, являющегося, по мнению А. Эйнштейна , самым важным физическим открытием со времён создания И. Ньютоном основ классической механики .

Силовой характеристикой магнитного поля является вектор магнитной индукции B , boldsymbol, B , с помощью которого определяются механические силы и вращательные моменты сил, действующие со стороны магнитного поля на движущиеся заряды, токи и тела, обладающие магнитным моментом. Магнитное поле также характеризуется вектором напряжённости магнитного поля H ; boldsymbol; H ; индукция и напряжённость магнитного поля, находящегося в изотропной среде, связаны выражением: H = B μ 0 μ , boldsymbol = frac<boldsymbol><mu_0 mu>, H = μ 0 ​ μ B ​ , где μ mu μ – магнитная проницаемость среды, μ 0 mu_0 μ 0 ​ – магнитная постоянная .

Источниками магнитного поля являются проводники с током, движущиеся заряды, физические объекты и тела, обладающие магнитным моментом . Для измерения характеристик магнитного поля используют различные магнитометры .

В технических приложениях магнитные поля по величине магнитной индукции B B B подразделяют на слабые (до 0,05 Тл), средние (0,05–4 Тл), сильные (4–100 Тл) и сверхсильные (свыше 100 Тл). Слабые и средние магнитные поля широко используются в радиотехнике и электронике , электротехнике и электроэнергетике . Их получают с помощью постоянных магнитов и электромагнитов (в том числе сверхпроводящих ).

Сильные магнитные поля используются в мощных электротехнических и электрофизических установках, в том числе в ускорителях заряженных частиц , в разрабатываемых энергетических установках управляемого термоядерного синтеза (проект ITER, International Termonuclear Energy Reactor). Для получения постоянного сильного магнитного поля (до 20–30 Тл) применяют сверхпроводящие соленоиды с дополнительным теплоотводом. Более сильные магнитные поля (до 160 Тл) удаётся получать только в течение коротких промежутков времени с помощью импульсных соленоидов, через которые пропускается мощный разрядный ток короткого замыкания , или с помощью магнитокумулятивных (взрывомагнитных) генераторов (до 1 0 3 10^3 1 0 3 Тл), в которых начальное магнитное поле очень быстро сжимается внутри проводящей оболочки, многократно возрастая в силу сохранения магнитного потока Φ = B S Phi = boldsymbol Φ = BS при взрывном уменьшении площади поперечного сечения S S S проводящей оболочки, заполненной магнитным полем.

Наблюдаемые природные магнитные поля имеют разные величины: магнитное поле Земли на её поверхности составляет около 5 ⋅ 1 0 – 5 5 cdot 10^ 5 ⋅ 1 0 –5 Тл, магнитное поле Юпитера – порядка
1 0 – 3 10^ 1 0 –3 Тл, магнитное поле внутри солнечных пятен составляет доли Тл, отдельные звёзды обладают магнитным полем с индукцией порядка нескольких Тл. Наибольшими магнитными полями обладают звёзды, находящиеся на конечном этапе своей эволюции, когда их размеры значительно уменьшаются (магнитокумулятивный механизм усиления магнитного поля). У белых карликов наблюдаются магнитные поля порядка 1 0 3 10^3 1 0 3 Тл, у нейтронных звёзд – порядка 1 0 7 10^7 1 0 7 Тл; у четырёх нейтронных звёзд (трёх в нашей Галактике и одной в её спутнике – Большом Магеллановом Облаке ) обнаружены магнитные поля порядка 1 0 11 10^ 1 0 11 Тл.

Опубликовано 20 января 2023 г. в 19:36 (GMT+3). Последнее обновление 20 января 2023 г. в 19:36 (GMT+3). Связаться с редакцией

Магнитное поле и его параметры, магнитные цепи

Магнитное поле и его параметры, магнитные цепи

Под термином «магнитное поле» принято подразумевать определенное энергетическое пространство, в котором проявляются силы магнитного взаимодействия. Они влияют на:

  • отдельные вещества: ферримагнетики (металлы — преимущественно чугуны, железо и сплавы из них) и их класс ферритов вне зависимости от состояния;
  • движущиеся заряды электричества.

Физические тела, обладающие суммарным магнитным моментом электронов или других частиц, называют постоянными магнитами . Их взаимодействие представлено на картинке силовыми магнитными линиями .

Силовые линии магнитного поля

Они образовались после поднесения постоянного магнита к обратной стороне картонного листа с ровным слоем железных опилок. Картинка демонстрирует четкую маркировку северного (N) и южного (S) полюсов с направлением силовых линий относительно их ориентации: выход из северного полюса и вход в южный.

Как создается магнитное поле

Источниками магнитного поля являются:

  • постоянные магниты;
  • подвижные заряды;
  • изменяющееся во времени электрическое поле.

Источники магнитного поля

С действием постоянных магнитов знаком каждый ребенок детсадовского возраста. Ведь ему уже приходилось лепить на холодильник картинки-магнитики, извлекаемые из упаковок с всякими лакомствами.

Находящиеся в движении электрические заряды обычно обладают значительно большей энергией магнитного поля, чем постоянные магниты. Его тоже обозначают силовыми линиями. Разберем правила их начертания для прямолинейного проводника с током I.

Магнитное поле прямолинейного проводника с током

Магнитная силовая линия проводится в плоскости, перпендикулярной движению тока так, чтобы в каждой ее точке сила, действующая на северный полюс магнитной стрелки, направлялась по касательной к этой линии. Таким образом создаются концентрические окружности вокруг движущегося заряда.

Направление этих сил определяется известным правилом винта или буравчика с правосторонней навивкой резьбы.

Правило буравчика для прямолинейного проводника

Необходимо расположить буравчик соосно с вектором тока и вращать рукоятку так, чтобы поступательное движение буравчика совпадало с его направлением. Тогда ориентация силовых магнитных линий будет показана вращением рукоятки.

В кольцевом проводнике вращательное движение рукоятки совпадает с направлением тока, а поступательное — указывает на ориентацию индукции.

Правило буравчика для кольцевого проводника

Магнитные силовые линии всегда выходят из северного полюса и входят в южный. Они продолжаются внутри магнита и никогда не бывают разомкнутыми.

Правила взаимодействия магнитных полей

Магнитные поля от разных источников складываются друг с другом, образуя результирующее поле.

Напрвление сил взаимодействия магнитов

При этом магниты с разноименными полюсами (N — S) притягиваются друг к другу, а с одноименными (N – N, S — S) — отталкиваются. Силы взаимодействия между полюсами зависят от расстояния между ними. Чем ближе сдвинуты полюса, тем большее усилие возникает.

Основные характеристики магнитного поля

  • вектор магнитной индукции ( В );
  • магнитный поток (Ф);
  • потокосцепление (Ψ).

Интенсивность или силу воздействия поля оценивают величиной вектора магнитной индукции . Она определяется значением силы «F», создаваемой проходящим током «I» по проводнику длиной «l». В =F/(I∙l)

Единица измерения магнитной индукции в системе СИ — Тесла (в знак памяти об ученом физике, который исследовал эти явления и описал их математическими методами). В русской технической литературе она обозначается «Тл», а в международной документации принят символ «Т».

1 Тл — это индукция такого однородного магнитного потока, который воздействует с силой в 1 ньютон на каждый метр длины прямолинейного проводника, перпендикулярно расположенного направлению поля, когда по этому проводнику проходит ток 1 ампер.

Направление вектора В определяется по правилу левой руки.

Правило левой руки

Если расположить ладонь левой руки в магнитном поле так, чтобы силовые линии из северного полюса входили в ладонь под прямым углом, а четыре пальца расположить по направлению тока в проводнике, то оттопыренный большой палец укажет направление действия силы на этот проводник.

В случае, когда проводник с электрическим током расположен не под прямым углом к магнитным силовым линиям, то сила, воздействующая на него, будет пропорциональна величине протекающего тока и составляющей части проекции длины проводника с током на плоскость, расположенную в перпендикулярном направлении.

Сила, воздействующая на электрический ток, не зависит от материалов, из которых создан проводник и площади его сечения. Даже если этого проводника вообще не будет, а движущиеся заряды станут перемещаться в другой среде между магнитными полюсами, то эта сила никак не изменится.

Если внутри магнитного поля во всех точках вектор В имеет одинаковое направление и величину, то такое поле считают равномерным.

Любая среда, обладающая магнитными свойствами, оказывает влияние на значение вектора индукции В .

Магнитный поток (Ф)

Если рассматривать прохождение магнитной индукции через определенную площадь S, то ограниченная ее пределами индукция будет называться магнитным потоком.

Определением магнитного потока

Когда площадь наклонена под каким-то углом α к направлению магнитной индукции, то магнитный поток уменьшается на величину косинуса угла наклона площади. Максимальное же его значение создается при перпендикулярном расположении площади к ее пронизывающей индукции. Ф=В·S

Единицей измерения магнитного потока является 1 вебер, определяемый прохождением индукции в 1 теслу через площадь в 1 метр квадратный.

Этот термин используется для получения суммарной величины магнитного потока, создаваемого от определенного количества проводников с током, расположенных между полюсами магнита.

Для случая, когда один и тот же ток I проходит по обмотке катушки с числом витков n, то полный (сцепленный) магнитный поток от всех витков называют потокосцеплением Ψ.

Определение потокосцепления

Ψ=n·Ф . Единицей измерения потокосцепления является 1 вебер.

Как образуется магнитное поле от переменного электрического

Электромагнитное поле, взаимодействующее с электрическими зарядами и телами, обладающими магнитными моментами, представляет собой совокупность двух полей:

  • электрического;
  • магнитного.

Они взаимосвязаны, представляют собой совокупность друг друга и при изменении в течение времени одного происходят определенные отклонения в другом. К примеру, при создании переменного синусоидального электрического поля в трехфазном генераторе одновременно образуется такое же магнитное поле с характеристиками аналогичных чередующихся гармоник.

Магнитные свойства веществ

По отношению к взаимодействию с внешним магнитным полем вещества подразделяют на:

  • антиферромагнетики с уравновешенными магнитными моментами, благодаря чему создается очень малая степень намагниченности тела;
  • диамагнетики со свойством намагничивания внутреннего поля против действия внешнего. Когда же внешнее поле отсутствует, то у них магнитные свойства не проявляются;
  • парамагнетики со свойствами намагничивания внутреннего поля по направлению действия внешнего, которые обладают малой степенью магнетизма;
  • ферромагнетики , обладающие магнитными свойствами без приложенного внешнего поля при температурах, меньших значения точки Кюри;
  • ферримагнетики с неуравновешенными по величине и направлению магнитными моментами.

Все эти свойства веществ нашли разнообразное применение в современной технике.

Этим термином называют совокупность различных магнитных материалов, по которым пропускают магнитный поток. Они являются аналогом электрических цепей и описываются соответствующими математическими законами (полного тока, Ома, Кирхгофа и др). Смотрите — Основные законы электротехники.

На основе расчетов магнитных цепей работают все трансформаторы, индуктивности, электрические машины и многие другие устройства.

Например, у работающего электромагнита магнитный поток проходит по магнитопроводу из ферромагнитных сталей и воздуху с выраженными не ферромагнитными свойствами. Совокупность этих элементов и составляет магнитную цепь.

Большинство электрических аппаратов в своей конструкции имеют магнитные цепи. Подробнее про это читайте в этой статье — Магнитные цепи электрических аппаратов

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Оцените статью
TutShema
Добавить комментарий