Лабораторный блок питания своими руками 0 30в 0 10а из бп компьютера

При наладке радиоэлектронных устройств часто возникает потребность в лабораторном блоке питания, позволяющий регулировать выходное напряжение и ток, и имеющий защиту. В магазинах они довольно дороги, поэтому я решил его собрать самостоятельно.

Покопавшись в закромах, я нашёл компьютерный блок питания ATX, и решил использовать его в качестве источника питания. Эти блоки питания (относительно) маломощны и не подходят для новых компьютеров. Так же, старый блок питания легко купить за дешево в магазинах подержанных компьютеров. Это очень хороший источник питания для отладки самоделок.

Компьютерный блок питания имеет свой корпус, поэтому о нём не нужно особо заботиться. Остаётся решить вопрос с регулированием выходного напряжения, ограничения тока и защиты. Потребовалось устройство, которое соответствовало моим требованиям:

  • Обеспечивает регулирование напряжения и тока;
  • Работает от входного напряжения 12В;
  • Максимальное выходное напряжение не менее 24В;
  • Максимальный выходной ток не менее 3А;
  • Дешёвый.

На просторах интернет-магазинов я нашел модуль преобразователя DC-DC Buck-Boost ZK-4KX, который соответствует всем моим запросам. Этот модуль оснащен пользовательскими интерфейсами (дисплей, кнопки, поворотный энкодер).

Модуль имеет следующие параметры:

  • Входное напряжение: 5-30В;
  • Выходное напряжение: 0,5 — 30В;
  • Выходной ток: 0-4А;
  • Разрешение дисплея: 0,01В и 0,001А;
  • Цена: ~ 8-10$.

DC-DC преобразователь имеет защиту, и при превышении напряжения, тока, мощности и температуры отключит выход.

1312712825.jpg

Помимо DC-DC преобразователя и компьютерного блока питания так же потребуется:

  • Светодиод + резистор 1 кОм для индикации состояния блока ATX;
  • Простой переключатель для включения блока ATX;
  • Разъемы Banana female (2 пары).

161354409.jpg

У меня компьютерный блок питания на 300W, но для этой цели подойдёт любой. У блока питания на выходе куча выходных напряжений, их можно отличить по цвету провода:

  • Зеленый: он понадобится нам для включения устройства, замкнув его вместе с землей.
  • Фиолетовый: + 5В в режиме ожидания. Мы будем использовать для обозначения статуса ATX.
  • Желтый: + 12В. Он будет источником питания DC-DC преобразователя.
  • Красный: + 5В. Это будет фиксированный выход 5V.

Остальные выходы не используются, но если вам нужна какая-либо из них, просто подключите ее провод к передней панели.

1569677238.jpg

Регулируемый блок питания от 0 до 30 Вольт 10 Ампер.

После разборки я удалил все ненужные кабели и разъем выхода переменного тока.

889076505.jpg 2262755081.jpg

4229870697.jpg 3246300633.jpg

1127090696.jpg

Несмотря на то, что внутри блока ATX мало места, при некоторой компоновке мне удалось разместить весь пользовательский интерфейс на одной стороне. После компоновки и разметки я вырезал отверстия в пластине с помощью лобзика и дрели.

2119050168.jpg 3087176300.jpg

2237840348.jpg 3267543308.jpg

Также я установил дополнительные клеммы для вывода фиксированного напряжения выход +5 В.

4288866492.jpg

Так как корпус выглядит не очень красиво, я купил краску в баллончике, и покрасил его в черный цвет.

1300378796.jpg 1893866780.jpg

Внутри корпуса компоненты необходимо соединить следующим образом:

  • Провод включения питания (зеленый) + масса → переключатель
  • Резервный провод (фиолетовый) + земля → светодиод + резистор 1 кОм
  • Провод + 12В (желтый) + масса → Вход модуля ZK-4KX
  • Выход модуля ZK-4KX → Банановые клеммы
  • + 5V провод (красный) + масса → другие банановые клеммы

927098828.jpg

Поскольку значения, измеренные модулем ZK-4KX отличались от значений мультиметра, я откалибровал его зайдя в режим установки параметров, в соответствующий раздел.

170020476.jpg2289228205.jpg

На панели имеются две кнопки, которые позволяют отобразить на индикаторе различные параметры, а так же настроить защиту блока, и произвести калибровку.

Коротким нажатием кнопки SW можено переключить отображаемый параметр во второй строке:

  • Выходной ток [A]
  • Выходная мощность [Вт]
  • Выходная мощность [Ач]
  • Время, прошедшее с момента включения [ч]

Длинным нажатием кнопки SW можно переключить отображаемый параметр в первой строке:

  • Входное напряжение [В]
  • Выходное напряжение [В]
  • Температура [°C]

Чтобы войти в режим установки параметров, нужно долго нажимать кнопку U/I. Тут можно установить следующие параметры:

  • Нормально открытый [ВКЛ/ВЫКЛ]
  • Пониженное напряжение [В]
  • Повышенное напряжение [В]
  • Перегрузка по току [A]
  • Превышение мощности [Вт]
  • Перегрев [° C]
  • Избыточная мощность [Ач / ВЫКЛ]
  • Тайм-аут [ч / ВЫКЛ]
  • Калибровка входного напряжения [В]
  • Калибровка выходного напряжения [В]
  • Калибровка выходного тока [A]

Связанные статьи

Блоки питания

Преобразователь для Гаусс-пушки

Инвертор Вальдемара — нашел широкую популярность среди любителей пушек Гаусса. Инвертор имеет простую конструкцию, функцию самоотключения при полной зарядке.

Блоки питания

Схема переделки БП ATX в регулируемый

Представленная схема является модификацией примерной схемы блока питания ATX, поэтому она может немного отличаться, когда речь идет о части, содержащей резервный преобразователь, используемые ключи или значения некоторых элементов, поэтому обозначил элементы на схеме, поместив «xx» рядом с теми, которые должны быть изменены или добавлены.

Блок питания 0-30 В из компьютерного БП ATX

Блок питания оснащен двумя линейными потенциометрами по 10 кОм, один для регулирования напряжения, другой для ограничения тока. Ток измеряется между центральным отводом трансформатора и землей с помощью измерительного резистора 5 мОм / 2 Вт. Напряжение на измерительном резисторе отрицательно по отношению к массе, поэтому оно поступает на TL494, операционный усилитель LM358 используется только для усиления сигнала от потенциометра регулировки тока. Добавленный 36 кОм резистор на ножке 6 используется только для поднятия частоты инвертора с 30 кГц до примерно 45 кГц – без него блок питания также будет работать.

Блок питания 0-30 В из компьютерного БП ATX

В первый раз оставил главный трансформатор без изменений, включил источник питания и когда все заработало, перенастроил соединения вторичной обмотки. Эта операция не является необходимой, но тогда максимальное выходное напряжение можно безопасно поднять примерно до 24 В. У трансформатора было 4 вторичных обмотки на каждой стороне 3 витка, соединенных параллельно, и одна 4 витка обмотка, добавленная последовательно. Обмотки были разделены и соединены как на схеме.

Полезное на сайте:
Цветомузыка на мощных светодиодах со стробоскопом

Дроссель использовался как есть, вначале удалил из него все ненужные обмотки и оставил только то, что было по линии 12 В. Сердечником дросселя является T106-26, при 30 витках он должен иметь около 83 мкГн и ток насыщения 8,6.

Резервный преобразователь должен оставаться неизменным и содержать все элементы, необходимые для его правильной работы, поэтому его не следует изменять, тут схема составлена в упрощенном виде, лишь обозначено место, откуда должно быть взято питание контроллера и вентилятора. Блок питания был оснащен обычным цифровым модулем вольтметра. Блок работает стабильно, вполне устойчив к коротким замыканиям на выходных клеммах.

Источник питания типа AT также может быть преобразован, должен быть заменен только трансформатор или должны быть добавлены два диода FR107 для питания контроллера отводом 6 витков (3 + 3).

Выполнив выпрямитель из блока питания ATX и убрав режим Standby, преобразовал его в AT, и он также заработал без проблем. Регулирование тока также, даже с закороченными выходными проводами, увеличивает напряжение питания контроллера до примерно 26-29 В.

Источник питания AT от ATX, за исключением резервного преобразователя, отличается только способом подачи питания на контроллер (источник питания берется из выходного выпрямителя перед дросселем) и дополнительными резисторами 330k возбуждения между коллектором и базой главных транзисторов.

Каждый блок питания ATX может быть безопасно адаптирован к напряжению 24 В, не трогая на главный трансформатор. Единственное что нужно сделать, это удалить ненужные линии (в частности, 3,3 В) и подпаять конденсаторы на соответственно более высокое напряжение. Также полезно увеличить частоту инвертора примерно до 40-50 кГц, тогда уменьшается риск насыщения сердечника.

Полезное на сайте:
Радиатор охлаждения для китайского модуля БП

Второй вариант доработки БП

Также добавлю другую проверенную схему.

Блок питания 0-30 В из компьютерного БП ATX

Недостатком этого решения является использование двух дополнительных диодов и удвоение потерь выпрямителя. После замены резистора вывода 1 TL494 с 24 кОм на 36 кОм, можете снимать примерно до 40 В на выходе.

Блок питания 0-30 В из компьютерного БП ATX

Ещё приведу фотографии импульсного трансформатора и что с ним делать:

Блок питания 0-30 В из компьютерного БП ATX

Согласно модификации это должно быть так:

Блок питания 0-30 В из компьютерного БП ATX

Ш-образные ферриты тут EI33, конечно и с EI28 будет работать, но более 5 A из них не вытянуть.

Блок питания 0-30 В из компьютерного БП ATX

Что касается родной защиты источников питания AT / ATX, к сожалению большинство из них не имеют защиты от перегрузки по току, единственными средствами защиты являются перенапряжение и пониженное напряжение, а также превышение максимальной мощности, а как мы знаем мощность является произведением тока и напряжения, поэтому если источник питания имеет ограничение 300 Вт и максимум в линии 12 В 10 А, в таком БП до срабатывания защиты, ограничивающей максимальную мощность, произойдёт попытка выдать 25 А, а это приведет к насыщению дросселя и взрыву транзисторов.

Блок питания 0-30 В из компьютерного БП ATX

Здесь же источник питания переключается в режим регулирования тока при коротком замыкании выхода, и не имеет значения, происходит ли короткое замыкание при низком или максимальном напряжении. Сделан тест – ток транзисторов ограничен коэффициентом трансформации 4 и сглажен на дросселе. Ток мгновенного срабатывания первичной обмотки не должен превышать 2 А, токовый вывод зависит от резистора, поэтому для 100 Ом это будет 1,6 А, для 47 Ом 3,4 А, в любом случае максимальный мгновенный ток силовых транзисторов не должен превышать 6 А.

О переделке такого БП ATX в зарядное можете почитать по ссылке, а нерегулируемый вариант подобного блока питания есть тут.

Переделка началась

Что нам понадобиться?

  • — Клеммы винтовые.
  • — Резисторы мощностью 10 Вт и сопротивлением 10 Ом (можно попробовать 20 Ом). Мы будем использовать составные из двух пятиватных резисторов.
  • — Трубка термоусадочная.
  • — Пара светодиодов с гасящими резисторами на 330 Ом.
  • — Переключатели. Один для сети, второй для управления

Детали для переделки блокаДетали для переделки блокаДетали для переделки блокаДетали для переделки блокаДетали для переделки блока

Лабораторный источник питания из БП компьютера

Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.

Начнем

Снимаем верхнюю крышку кожуха.
Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.

Лабораторный источник питания из БП компьютера

Вставляем клеммы и затягиваем.

Лабораторный источник питания из БП компьютера

Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.

Лабораторный источник питания из БП компьютера

Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.
Также сверлим отверстия по тумблер и светодиоды.

Лабораторный источник питания из БП компьютера

Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.

Лабораторный источник питания из БП компьютера

Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.

Лабораторный источник питания из БП компьютера

Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.

Лабораторный источник питания из БП компьютера

Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.

Лабораторный источник питания из БП компьютера

Можно не подавать, если он уже звонится на 7 ноге ШИМ. Просто на некоторых платах на 7 выводе не было общего минуса после выпайки деталей (почему – не знаю, мог ошибаться, что не было:)

Полезное на сайте:
РЕГУЛЯТОР МОЩНОСТИ ДЛЯ 3 ФАЗНОГО МОТОРА

Данный резистор будет ограничивать напряжение выдаваемое БП. Этот резистор и R60 образует делитель напряжения, который будет делить выходное напряжение и подавать его на 1 ножку.

Входы ОУ(ШИМ) на 1-й и 2-й ножках у нас служат для задачи выходного напряжения.

На 2-ю ножку приходит задача по выходному напряжению БП, поскольку на вторую ножку максимально может прийти 5 вольт (vref) то обратное напряжение должно приходить на 1-ю ножку тоже не больше 5 вольт. Для этого нам и нужен делитель напряжения из 2х резисторов, R60 и тот что мы установим с выхода БП на 1 ногу.

Как это работает: допустим переменным резистором выставили на вторую ногу ШИМ 2,5 Вольта, тогда ШИМ будет выдавать такие импульсы (повышать выходное напряжение с выхода БП) пока на 1 ногу ОУ не придёт 2,5 (вольта). Допустим если этого резистора не будет, блок питания выйдет на максимальное напряжение, потому как нет обратной связи с выхода БП. Номинал резистора 18,5 кОм.

↑ Этапы переделки

1. Вмонтирована плата зарядного устройства от мобильного телефона Nokia AC-12E с доработкой. В принципе можно использовать и другие зарядные устройства.

Доработка заключалась в перемотке III обмотки трансформатора и установке дополнительного диода и конденсатора. После переделки блок стал выдавать напряжения +8V для питания вентилятора и вольтметра-амперметра и +20V для питания микросхемы управления TL494N.


2. С платы блока AT выпаяны детали самозапуска первичной цепи и цепи регулировки выходного напряжения. Также были удалены все вторичные выпрямители.

Выходной выпрямитель переделан по мостовой схеме. Использованы три диодных сборки MBR20100CT. Дроссель перемотан — диаметр кольца 27 мм, 50 витков в 2 провода ПЭЛ 1 мм. В качестве нелинейной нагрузки применена лампа накаливания 26V 0,12A. С ней напряжение и ток хорошо регулируются от нуля.
Для обеспечения устойчивой работы микросхемы изменены цепи коррекции. Для грубой и точной регулировок напряжения и тока применено особое подключение потенциометров. Такое подключение позволяет плавно изменять напряжение и ток в любом месте при любом положении потенциометра грубой регулировки.

Особого внимания требует шунт, провода для регулировки и измерения должны подключатся непосредственно к его выводам, так как напряжение, снимаемое с него невелико. На схеме эти подключения показаны фиолетовыми стрелками. Измеряемое напряжение для цепи регулирования снимается с делителя с коррекцией для устранения самовозбуждения в цепях управления.
Верхний предел установки напряжения подбираются резисторами R38, R39 и R40. Верхний предел установки тока подбирается резистором R13.


3. Для измерения тока и напряжения применен вольтметр-амперметр

За основу взята схема «Суперпростой амперметр и вольтметр на супердоступных деталях (автовыбор диапазона)» от Eddy71.
В схему введена регулировка баланса ОУ при измерении тока, что позволило резко улучшить линейность. На схеме это потенциометр «Баланс ОУ», напряжение с которого поступает на прямой или инверсный входы (подбирается, куда подключить, на схеме обозначено зелеными линиями).
Автоматический выбор диапазона измерения реализован программно. Первый диапазон до 9,99A с указанием сотых долей, второй до 12A с указанием десятых долей ампера.


4. Программа для микроконтроллера написана на СИ (mikroC PRO for PIC)и снабжена комментариями.

↑ Конструкция и детали

Конструктивно все элементы размещены в корпусе блока AT. Плата зарядного устройства закреплена на радиаторе с силовыми транзисторами. Сетевые разъемы убраны и на их месте установлен выключатель и выходные зажимы. Сбоку на крышке блока находятся резисторы установки напряжения и тока и индикатор вольтметра-амперметра. Закреплены они на фальшпанели с внутренней стороны крышки.

Чертежи выполнены в программе Frontplatten-Designer 1.0. Междукаскадный трансформатор блока AT не переделывается. Выходной трансформатор блока AT тоже не переделывается, просто средний отвод, выходящий из катушки, отпаивается от платы и изолируется. Выпрямительные диоды заменены на новые, указанные в схеме.
Шунт взят от неисправного тестера и закреплен на изоляционных стойках на радиаторе с диодами. Плата для вольтметра-амперметра использована от «Суперпростого амперметра и вольтметра на супердоступных деталях (автовыбор диапазона)» от Eddy71 с последующей доработкой (перерезаны дорожки, согласно схемы).

Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой

Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.

Расцветка и назначение проводов блока питания ATX

Цвет
Назначение
Примечание

Табличка особых пояснений не требует. С зеленым проводом ( Power on ) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.

Фиолетовый провод ( +5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу ( Power good ) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.

Как сделать блок питания или зарядное устройство из компьютерного БП ATX

Переделка БП ATX в регулируемый или лабораторный блок питания

А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ-контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).

Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Сразу оговоримся – хотя типовые схемы включения этих микросхем одинаковы, некоторые отличия в зависимости от модели БП все же есть. Поэтому универсального решения для переделки всех БП не существует.

Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.

Схема блока ATX

Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.

Лишние провода

Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.

Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.

микросхема TL494

Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.

дорожки

Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.

схема ШИМ

Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.

Приборы измерения

Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Первое включение нашего лабораторного блока питания производим через лампу накаливания 220 В мощностью 60 Вт. Это поможет избежать проблем, если мы наделали ошибок в монтаже. Если лампа не светится или светится вполнакала, а блок питания запустился, то все в порядке. Если лампа горит в полный накал, а блок питания молчит, то придется искать ошибки.

блока питания, через лампу

Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку – 2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.

Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.

Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.

Лабораторный блок питания из компьютерного блока на TL494

Схема адаптера для сборки лабораторного блока питания включает в себя минимальную обвязку ШИМ для ее работы.

лабораторный блок питания из компьютерного блока на ШИМ TL494

Печатку этой для этой платы можно будет скачать в конце статьи. Она не содержит дефицитных компонентов и может быть собрана своими руками буквально за вечер.

лабораторный блок питания из компьютерного блока на ШИМ TL494

За регулировку напряжение отвечает резистор R4, от позволяет регулировать выходное напряжение в диапазоне 0-17 В. Ток регулируется резистором R10 в пределах 0-10 А. В качестве шунта используются два резистора по 0,1 Ом х 10 Вт. По сути, с панели, где стояла микросхема, берется питание для адаптера, а возвращаются в блок лишь сигналы для транзисторов раскачки.

Если использовать три резистора по 0,1 Ом х 10 Вт в качестве шунта, то максимальный выходной ток будет достигать 15 А.

Вот так выглядит наш тестовый образец адаптера, установленный вместо стандартной микросхемы.

лабораторный блок питания из компьютерного блока на ШИМ TL494

Плата-адаптер подойдет практически к любому блоку на основе TL494 в независимости от наличия дополнительных супервизоров, которые могут быть установлены производителем. При желании ненужные компоненты в блоке можно удалить, но если берут сомнения в правильности действий, то можно их и оставить.

Лабораторный блок питания из компьютерного блока на ШИМ TL494

Тесты лабораторного блока питания

Ну, и на закуску — финальные тесты после подключения вольтамперметра. Максимальное напряжение 17,1 В, а ток 9,89 А.

Лабораторный блок питания

Важно! Необходимо учесть при сборке блока пару моментов:

  1. Штатные выходные конденсаторы по шине +12 В имеют максимально рабочее напряжение 16 В, их следует заменить, поставить новые с рабочим напряжением 25 В.
  2. Силовые диоды на очень старых и дешевых блоках могут не выдержать ток 10 А, это надо учесть, и при необходимости их заменить.

Выше описанный переходник по нашим наброскам изготовил и предоставил фотоматериалы Виталий Ликин из Волгограда. Скачать печатку в формате lay можно тут:

Оцените статью
TutShema
Добавить комментарий