Конденсатор для чего служит

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.

Назначение конденсатора и принцип его работы – это распространенные вопросы, которыми задаются новички в электротехнике. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, такое устройство получает электрический ток, сохраняет его и впоследствии передает в цепь. Для лучшего понимания принципа работы посмотрите статью про то, как сделать простой конденсатор своими руками .

Описание: Принцип действия конденсатора

Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток , поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

Описание: Принцип работы конденсатора

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Конденсаторы в автомобиль. Зачем нужен конденсатор Обзор avtozvuk.ua

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

Описание: конструкция бумажного конденсатора

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

3. Изолятор из стекла;

6. Прокладка из картона;

7. Оберточная бумага;

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

НАЗНАЧЕНИЕ И ИСПОЛЬЗОВАНИЕ КОНДЕНСАТОРОВ

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В светильниках применяется для компенсации реактивной мощности.

Список необходимых компонентов

Для выполнения всех экспериментов в данном уроке потребуются: макетная плата, светодиод, конденсатор, резисторы и немного проводов вилка-вилка. Необходимые компоненты можно добавить в корзину прямо здесь, и затем оформить заказ в нашем интернет-магазине.

У этого прибора есть множество применений. Мы не будем перечислять их все, отметим лишь некоторые.

1) Фильтрация пульсаций в цепях питания. Конденсаторы часто ставят на входе и выходе преобразователей напряжения, на входе питания микросхем. В этом случае конденсаторы служат своего рода амортизаторами, которые могут сгладить неровности напряжения, подобно амортизаторам автомобиля, сглаживающим неровности дороги.

2) Времязадающие электрические цепи. Конденсаторы разной ёмкости заряжаются и разряжаются за разное время. Эту особенность используют в устройствах, где необходимо отсчитывать определенные промежутки времени. Например, с помощью резистора и конденсатора задается период и скважность импульса в микросхеме таймера 555 (урок про таймер 555).

3) Датчики прикосновения. В роли одной из обкладок конденсатора может выступить человек. Эту особенность нашего тела используют в своей работе сенсорные кнопки, тачскрины и тачпады некоторых видов.

4) Хранение данных. Конденсаторы применяются для хранения данных в оперативной памяти — ОЗУ (SRAM). Каждый модуль такой памяти содержит миллиарды отдельных конденсаторов, которые могут быть заряжены или разряжены, что интерпретируется как единица или ноль.

И это далеко не все варианты применения этого незаменимого прибора. Попробуем разобраться, как устройство конденсатора позволяет ему выполнять столько полезных функций!

Устройство простейшего конденсатора

Конденсатор состоит их двух металлических пластин — электродов, называемых также обкладками, между которыми находится тонкий слой диэлектрика.

Устройство конденсатора

Собственно, все конденсаторы устроены именно таким (или почти таким) образом, разве что меняется материал обкладок и диэлектрика.

Чтобы увеличить ёмкость конденсатора, не увеличивая его размеры, применяют разные хитрости. Например, если мы возьмем две обкладки в виде длинных полосок фольги, проложим между ними хотя бы тот же полиэтилен и свернем все это как рулет, то получится очень компактный прибор с большой ёмкостью. Именно так устроены плёночные конденсаторы.

Если вместо полиэтилена взять бумагу и пропитать её электролитом, то на поверхности фольги образуется тонкий слой оксида, который не проводит ток. Такой конденсатор будет называться электролитическим.

Электролитический конденсатор внутри

Существует много разных видов конденсаторов: бумажные, плёночные, оксидные алюминиевые и танталовые, вакуумные и т.п. В нашем уроке мы будем использовать оксидные электролитические конденсаторы из-за их большой ёмкости и доступности.

Устройство конденсаторов

Конструкции современных конденсаторов отличаются разнообразием, но можно выделить несколько типичных вариантов:

Пакетная конструкция

Используется в стеклоэмалевых, керамических и стеклокерамических конденсаторах. Пакеты образованы чередующимися слоями обкладок и диэлектрика. Обкладки могут изготавливаться из фольги, а могут представлять собой слои на диэлектрических пластинах – напыленный или нанесенный вжиганием.

Каждый пакетный конденсатор имеет верхнюю и нижнюю обкладки, имеющие контакты с торцов пакета. Выводы изготавливаются из проволоки или ленточных полосок. Пакет опрессовывается, герметизируется, покрывается защитной эмалью.

Трубчатая конструкция

Такую конструкцию могут иметь высокочастотные конденсаторы. Они представляют собой керамическую трубку с толщиной стенки 0,25 мм. На ее наружную и внутреннюю стороны способом вжигания наносится серебряный проводящий слой. Снаружи деталь обрабатывается изоляционным веществом. Внутреннюю обкладку выводят на наружный слой для присоединения к ней гибкого вывода.

Дисковая конструкция

Эта конструкция, как и трубчатая, применяется при изготовлении высокочастотных конденсаторов.

Диэлектриком в дисковых конденсаторах является керамический диск. На него вжигают серебряные обкладки, к которым подсоединены гибкие выводы.

Литая секционированная конструкция

Применяется в монолитных многослойных керамических конденсаторах, используемых в современной аппаратуре, в том числе с интегральными микросхемами. Деталь, имеющая 2 паза, изготавливается литьем керамики. Пазы заполняют серебряной пастой, которую закрепляют методом вживания. К серебряным вставкам припаивают гибкие выводы.

Рулонная конструкция

Характерна для бумажных пленочных низкочастотных конденсаторов с большой емкостью. Бумажная лента и металлическая фольга сворачиваются в рулон. В металлобумажных конденсаторах на бумажную ленту наносят металлический слой толщиной до 1 мкм.

Где используются конденсаторы

Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т.п.

В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.

К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.

К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.

Функции, выполняемые конденсаторами:

  • фильтрация высокочастотных помех;
  • сведение к минимуму пульсаций;
  • разделение сигнала на постоянные и переменные компоненты;
  • накопление энергии;
  • создание резонанса с катушкой индуктивности, что позволяет усилить сигнал.

Как проверить конденсатор

Теперь вы знаете как работает конденсатор и для чего его устанавливают в отдельных устройствах. Это полезные знания, но знаете ли вы, как проверить и починить поломку?

Сломанные конденсаторы

Прежде чем приступать к каким-либо работам с конденсатором, убедитесь, что устройство отключено от источника питания. Это базовый шаг, обеспечивающий безопасность во время диагностики.

Конденсаторы могут накапливать электрический заряд даже при отключении от источника питания, что может представлять потенциальную опасность. Поэтому перед началом любых работ необходимо его разрядить. Это можно сделать, соединив оба электрода конденсатора с помощью высокоомного резистора или специального приспособления для разрядки.

Первым шагом в диагностике является тщательная визуальная оценка.

Осмотрите конденсатор на предмет видимых повреждений, таких как деформация, утечка электролита (в случае электролитических моделей) или трещин в корпусе. Если вы заметили какие-либо видимые признаки повреждения, конденсатор следует немедленно заменить новым исправным компонентом.

Измерить сопротивление конденсатора можно мультиметром. Значение сопротивления должно быть очень высоким в начале измерения и постепенно уменьшаться до конечного значения по мере разряда конденсатора. Если оно остается низким или близким к нулю, это может указывать на повреждение.

Для проверки емкости элемента используйте мультиметр в режиме емкостного измерения. Подсоедините электроды конденсатора к соответствующим гнездам измерительного прибора и считайте результат. Сравните результат с маркировкой емкости на конденсаторе. Если измеренные значения существенно отличаются от заявленной емкости, это может означать, что он поврежден.

Как проверить эффективность конденсатора

Электролитический конденсатор, например, в компьютерных блоках питания, часто разрушается в результате увеличения их эквивалентного последовательного сопротивления (ESR).

Для проверки этого параметра используйте специальный тестер или мультиметр с функцией измерения ESR. Значение, превышающее нормальное, может указывать на необходимость замены.

Мультиметр

Конденсаторы имеют определенное рабочее напряжение. Убедитесь, что оно не превышает максимального значения, так как это может повредить конденсатор или привести к его взрыву.

В некоторых случаях, особенно при профессиональном ремонте электроники, могут использоваться специализированные диагностические инструменты, такие как анализаторы импеданса или тестер конденсаторов. Эти усовершенствованные устройства позволяют более точно оценить состояние конденсатора.

Конденсатор

Конденсатор — это устройство, предназначенное для накопления заряда и энергии электрического поля (от лат. kondensator — «уплотнять», «сгущать»).

Простейший плоский конденсатор состоит из двух одинаковых металлических пластин — обкладок — и слоя диэлектрика, толщина которого мала по сравнению с размерами пластин.

На схемах электрических цепей конденсатор обозначается: .

Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника тока. При зарядке обе обкладки получают заряды, равные по модулю, но противоположные по знаку. Под зарядом конденсаторов понимают модуль заряда одной из его обкладок. Свойство конденсатора накапливать электрический заряд характеризуется физической величиной — электроёмкостью .

Электроёмкость обозначается буквой (C) и определяется по формуле:
C = q U , где (q) — заряд конденсатора, (U) — напряжение между обкладками конденсатора.

Электроёмкость конденсатора зависит от площади перекрытия пластин и расстояния между ними, а также от свойств используемого диэлектрика:

C ∼ S d , где (S) — площадь каждой обкладки, (d) — расстояние между обкладками.
За единицу электроёмкости в СИ принимается Ф арад (Ф).

Она названа в честь Майкла Фарадея — английского физика. (1) Фарад равен ёмкости конденсатора, при которой заряд (1) Кулон создаёт между его обкладками напряжение (1) Вольт : 1 Фарад = 1 Кулон 1 Вольт .

(1) Ф — это очень большая ёмкость для конденсатора. Чаще всего конденсаторы имеют электроёмкость, равную дольным единицам Ф: микрофарад (мкФ) — 10 −6 Ф, пикофарад (пФ) — 10 −12 Ф.

Для получения требуемой ёмкости конденсаторы соединяют в батареи.

Если конденсаторы соединены параллельно, то общая ёмкость равна сумме ёмкостей: C об = C 1 + C 2 + C 3 .

5.1.png

Если конденсаторы соединены последовательно, то общая ёмкость будет равна: 1 C об = 1 C 1 + 1 C 2 + 1 C 3 .

5.2.png

При зарядке конденсатора внешними силами совершается работа по разделению положительных и отрицательных зарядов. По закону сохранения энергии работа внешних сил равна энергии поля конденсатора. При разрядке конденсатора за счёт этой энергии может быть совершена работа. Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Где используются конденсаторы

Да везде где требуются их свойства (не пропускать постоянный ток, умение накапливать электрическую энергию и менять свое сопротивление в зависимости от частоты), в фильтрах, в колебательных контурах, в умножителях напряжения и т.д.

Промышленность выпускает множество разных видов конденсаторов. Каждый из них обладает опредлёнными преимуществами и недостатками. У одних малый ток утечки, у других большая ёмкость, у третьих что-нибудь ещё. В зависимости от этих показателей и выбирают конденсаторы.

Радиолюбители, особенно как мы — начинающие — особо не заморачиваются и ставят, что найдут. Тем не менее следует знать какие основные виды конденсаторов существуют в природе.

Виды электрических конденсаторов

На картинке показано весьма условное разделение конденсаторов. Я его составил на свой вкус и нравится оно мне тем, что сразу понятно существуют ли переменные конденсаторы, какие бывают постоянные конденсаторы и какие диэлектрики используются в распространённых конденсаторах. В общем-то всё, что нужно радиолюбителю.

Керамические конденсаторы

Обладают малым током утечки, малыми габаритами, малой индуктивность, способны работать на высоких частотах и в цепях постоянного, пульсирующего и переменного тока.

Выпускаются в широком диапазоне рабоичх напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения выдерживают напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.

Слюдяные конденсаторы

Честно скажу не знаю выпускают ли их сейчас. Но раньше в таких конденсаторах в качестве диэлектрика использовалась слюда. А сам конденсатор состоял из пачки слюдяных, на каждой из которых с обеих сторон наносились обкладки, а потом такие платсинки собирались в «пакет» и запаковывались в корпус.

Обычно они имели ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.

Конденсаторы металлобумажные

Такие конденсаторы в качестве диэлектрика имеют конденсаторную бумагу, а в качестве обкладок — алюминиевые полоски. Длинные ленты алюминиевой фольги с проложенной между ними лентой бумаги сворачиваются в рулон и пакуются в корпус. Вот и весь фокус.

Такие конденсаторы бывают ёмкостью от тысяч пикофорад до 30 микрофорад, и могут выдерживать напряжение от 160 до 1500 В.

Поговаривают, что сейчас они ценятся аудиофиалами. Не удивлен — у них и провода односторонней проводимости бывают.

Полиэстеровые конденсаторы

В принципе обычные кондесаторы с полиэстером в качестве диэлектрика. Разброс ёмкостей от 1 нФ до 15 мФ при рабочем напряжении от 50 В до 1500 В.

Полипропиленовые конденсаторы

У конденсаторов этого типа есть два неоспоримых преимущества. Первое — можно их делать с очень маленьким допуском всего в 1%. Так что, если на таком написано 100 пФ, то значит его ёмкость 100 пФ +/- 1%. И второе — это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость от 100 пФ, до 10 мФ)

Электролитические конденсаторы

Эти конденсаторы отличаются от всех других тем, что их можно включать только цепь постоянного или пульсирующего тока. Они полярные. Имеют плюс и минус. Связано это с их конструкцией. И если такой конденсатор включить наоборот, то он скорее всего вздуется. А раньше они еще и весело, но небезопасно взрывались. Бывают электролитические конденсаторы алюминиевые и танталовые.

Алюминиевые электролитические конденсаторы устроены почти как бумажные с той лишь разницей, что обкладками такого конденсатора являются бумажная и алюминиевые полосы. Бумага пропитана электролитом, а на алюминиевыую полосу нанесен тонкий слой окисла, который и выступает в роли диэлектрика. Если подать на такой конденсатор переменный ток или включить обратно полярностям вывода, то электролит закипает и конденсатор выходит из строя.

Танталовые отличаются от алюминиевых тем что: в качестве диэлектрика используется пентаоксид тантала, меют рабочее напряжение до 100 В, имеют малые габариты, меньшую паразитная индуктивность (что позволяет их использовать в высокочастотных цепях).

Электролитические конденсаторы обладают достаточно большой ёмкостью, благодаря чему их, к примеру, часто используют в выпрямительных цепях.

На этом наверно всё. За кадром остались конденсаторы с диэлектриком из полкарбоната, полистирола и наверно ещё многие другие виды. Но думаю, что это уже будет лишним.

Продолжение следует.

Во второй части я планирую показать примеры типичного использования конденсаторов. Так что жми ctrl+D и добавляй mp16.ru к себе в закладки, что бы не потерять.

Что еще почитать

  • О резисторах для начинающих
  • В чем разница между потенциометром и реостатом?

/blog/pro-kondensatoryi/ Что такое электрический конденсатор, для чего он нужен, как работает конденсатор, где он используется, какие виды конденсаторов бывают, — обо всем об этом читайте здесь. 2016-04-04 2016-11-24 виды конденсаторов, заряд и разряд конденсатора, электрический конденсатор, емкость, алюминиевый конденсатор, переменный конденсатор, керамический конденсатор, конденсатор к50, smd конденсатор, пленочный конденсатор, электролитический конденсатор

Большой радиолюбитель и конструктор программ

Благодаря достижениям электроники у нас есть компьютеры, планшеты, смартфоны и другая популярная техника. Я создал этот сайт для популяризации радиолюбительства. Подписывайтесь на блог, рассылку и группу в ВК: vk.com/mp16a!

  • Основы электроники
  • Компоненты
  • Ликбез
  • Пошаговое изучение
  • Аналоговая схемотехника
  • Цифровая схемотехника
  • Книги для начинающих
  • Книги для продвинутых
  • Другие
  • Уроки для начинающих
  • Паяльные прилады
  • Измерительные приборы
  • Закрома Родины
  • Рисовалки печатных плат
  • Симуляторы схем
  • Устройство и принципы работы
  • Программаторы
  • Алгоритмы для МК
  • Распиновки
  • Arduino и прочие
  • Простые схемы
  • Любительские истории
  • Радиолюбительские технологии
  • Схемы усилителей
  • Схемы источников питания
  • Схемы на МК

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.

  • конденсаторы
  • электроника
  • электронные компоненты
  • электротехника
Оцените статью
TutShema
Добавить комментарий