Каково исходное состояние триггера

Триггеры представляют собой логические устройства, предназначенные для запоминания логического состояния, установленного управляющими сигналами.

Состояние триггера, как правило, отражается выходами Q (потенциалом на выходе Q). Как правило, триггеры имеют парафазный выход, на выводах которого должно соблюдаться логическое соответствие.

Основными управляющими сигналами следует считать:

  • сигнал S (set) – устанавливает в единичное состояние;
  • сигнал R (reset) – сбрасывает триггер в нулевое состояние;
  • сигнал C (clock) – сигнал, тактирующий работу триггера;
  • сигнал D (DELTA) – вход данных для установки триггера;
  • сигнал J (JUMP)
  • сигнал K (KEEP)
  • сигнал T (TIME) – счётный триггер

Активным уровнем входного сигнала могут быть как «высокий» так и «низкий». В последнем случае для обозначения активного уровня используется символ инверсии ( overline , overline ).

Простейшим видом триггера является R-S триггер, который можно реализовать на двух логических элементах.

При реализации триггера для управления могут использоваться как прямые сигналы, так и их инверсии, что отражает активный уровень их управляющего сигнала.

Триггеры. Триггер – это устройство, имеющее два устойчивых состояния, способное под воздействием управляющего сигнала скачком переходить из одного состояния в другое и

Триггер – это устройство, имеющее два устойчивых состояния, способное под воздействием управляющего сигнала скачком переходить из одного состояния в другое и хранить это состояние сколь угодно долго. Способность хранить состояние сколь угодно долго и определяет «память» триггера.

— по числу информационных входов: с одним входом, с двумя входами и более;

— по моменту срабатывания: асинхронные и синхронные триггеры;

— по функциональному назначению:

триггеры с раздельным запуском (RS-типа),

счетные (Т-типа), комбинированные (RST-типа), универсальные (JK-типа), задержки (D-триггер) и др.;

— по типу входного воздействия: триггеры со статическими входами, триггеры с динамическими входами.

Статические входы – это такие, по которым входной сигнал оказывает свое воздействие в течение всей его длительности. При динамических входах сигнал воздействует на триггер только на длительности фронта или среза.

Все триггеры имеют два выхода – прямой » Q » и инверсный «». Информация на одном выходе является инверсией информации на другом. В основу построения триггеров положено применение логических элементов «ИЛИ-НЕ» или «И-НЕ» и обратных связей.

Схема RS триггера на элементах «ИЛИ-НЕ» приведена на рис.18.1а. На рис. 18.1б показано его условное обозначение. Управление схемой.

ЧТО ТАКОЕ ТРИГГЕР В ЭЛЕКТРОНИКЕ И НЕ ТОЛЬКО

Входыпрямой выход
SRQn +1
Qn
Неопреде-ленность

осуществляется по уровню логической «1». Это значит, что когда на входах присутствует «0», т. е. , , состояние триггера не меняется. Уровень «0» является нейтральным.

Перед анализом работы схемы приведем логические действия элемента «ИЛИ-НЕ»:

(18.1)

Пусть после включения питания на входах и выходах схемы установились состояния: R = 0; S = 0; Q = 1; . Уровень «1» с выхода Q поступает на вход С элемента Э2. На входе В по условию присутствует «0». Согласно (18.1) входные сигналы Э2 сформируют на его выходе уровень логического «0».

Этот уровень поступает на вход D элемента Э1. На входе А этого элемента также присутствует «0». Такие состояния, согласно (18.1), формируют на выходе Э1 уровень логической «1». Таким образом, состояние первого элемента поддерживает состояние второго и наоборот, т. е. это устойчивое состояние триггера.

Пусть в некоторый момент времени t 1 на вход R поступает сигнал с логическим уровнем «1». Так как на входе D Э1 в это время присутствует уровень «0», то, согласно (18.1), уровень выхода Э1 скачком изменится с «1» до «0», т. е. Q = 0. Теперь на входы С и В элемента Э2 воздействует уровень логического «0». Поэтому выход Э2 скачком изменяет уровень от «0» до «1», т. е. .

Новое состояние триггера так же устойчивое. Оно не изменится, когда на вход R будет воздействовать уровень логического «0». При поступлении на вход R новых «1» состояние триггера останется прежним. Оно изменится только в том случае, когда уровень «1» поступит на вход S. Таким образом, RS -триггер управляется поочередно по двум входам.

Таблица возможных состояний триггера приведена на рис. 18.1в. При отсутствии входных сигналов триггер сохраняет информацию о последней из поступивших команд, т. е. служит элементом памяти. Сочетание входных сигналов является недопустимым. При таком сочетании триггер может принять любое состояние. Потому оно не применяется.

Схема RS -триггера на элементах «И-НЕ» приведена на рис. 18.2. На рис. 18.1б показано его условное обозначение. Собственно триггер собран на элементах Э3 и Э4. Элементы Э1 иЭ2 выполняют роль инверторов. Логические действия для элементов «И-НЕ» имеют вид:

(18.2)

Исполнительным значением двоичного сигнала для элементов «И-НЕ» является «0», нейтральным – «1». Если на А и В присутствует уровень «1», то состояние триггера устойчивое. Пусть, например, А = В = 1, Q = 1, . Уровень «1» с выхода Q поступает на вход С, а так как вход В = 1 по условию, то согласно (18.2) на выходе элемента Э4 формируется уровень логического «0». Этот уровень поступает на вход D элемента Э3. Вход А этого элемента равен «1» по условию. По (18.2) эти уровни сформируют на выходе элемента Э3 логическую «1». Таким образом, состояние элемента Э3 поддерживает состояние элемента Э4 и наоборот, т. е. это устойчивое состояние триггера.

Совершенно аналогично можно показать, что состояние А = В = 1, Q = 0, так же устойчиво. Включение инверторов Э1 и Э2 позволяет изменить исполнительный уровень входных сигналов, т. е. для входов S и R исполнительным уровнем является «1», а нейтральным «0». Поэтому возможные состояния схемы рис. 18.2 соответствуют таблице рис. 18.1в. Согласно этой таблице состояние входов S = R = 0 является нейтральным и позволяет триггеру сохранять память о последней из поступивших команд. Чтобы изменить состояние выходов триггера, необходимо на вход S или R подать «1». Состояние S = R = 1 недопустимо.

Триггеры по рис. 18.1а и 18.2 переходят в новое состояние сразу после поступления входного сигнала и поэтому называются асинхронными.

Во многих устройствах необходимо синхронизировать во времени переключение триггеров. Дело в том, что неодновременное переключение может привести к появлению непредусмотренных состояний устройства и к срыву его работы. Синхронные триггеры имеют дополнительный вход для подачи на него синхронизирующего (тактового) импульса определенной длительности.

Синхроимпульс своим исходным (нулевым) значением блокирует (закрывает) информационные входы S и R. В этом случае триггер не реагирует на входные сигналы, сохраняя предыдущее состояние. Триггер воспринимает информацию на входах, когда значение синхронного импульса равно «1» и переходит в новое состояние на интервале среза синхроимпульса.

Схема синхронного RS -триггера приведена на рис. 18.3а. На рис. 18.3б – его условное обозначение. Во всех случаях, когда С = 0 на выходах элементов Э1 и Э2 уровни , т. е. нейтральны для элементов Э3 и Э4 не зависимо от состояния входных сигналов S и R. В этом и заключается эффект блокирования входов.

При С = 1 на выходах элементов Э1 и иЭ2 сигналы становятся инверсными по отношению к исходным S и R. Их комбинация вызовет реакцию триггера в соответствии с таблицей рис. 18.1в.

— если S = R = 0, то , триггер сохраняет «память» о предыдущем состоянии;

— если S = 1, а R = 0, то ; , триггер переходит в состояние «1», т. е. ;

— если S = 0, а R = 1, то , триггер переходит в состояние «0», т. е.

Пример наглядно показывает, что для входов S, R и С исполнительным уровнем является «1».

Кроме синхронных входов R и S синхронный триггер снабжается асинхронными входами SA и RA. Асинхронные входы позволяют задать триггеру определенное исходное состояние перед началом работы в синхронном режиме. При синхронном управлении триггером на входах SA и RA должен поддерживаться нейтральный уровень, т. е. «1».

JK -триггеры – это универсальные синхронные триггеры. Работа JK -триггера описывается таблицей рис. 18.4а. Входы триггера . Как и RS -триггер, он сохраняет свое состояние при J = K = 0. Когда J = 1, триггер переходит в состояние . При R = 1 – в состояние . При J = K = 1 начальное состояние триггера меняется на противоположное, т. е. . Это основное отличие JK от RS -триггера.

Условное обозначение JK -триггера показано на рис. 18.4б, а временные диаграммы, поясняющие его работу на рис. 18.4в. Во время действия тактового

ВходыПрямой выход
JK

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Типы триггеров и принцип их работы

Существует несколько основных типов триггеров. Перед тем, как разобраться в различиях, следует отметить общее свойство: при подаче питания выход любого устройства устанавливается в произвольное состояние. Если это критично для общей работы схемы, надо предусматривать цепи предустановки. В простейшем случае это RC-цепочка, которая формирует сигнал установки начального состояния.

RS-триггеры

Самый распространенный тип асинхронного бистабильного устройства – RS-триггер. Он относится к триггерам с раздельной установкой состояния 0 и 1. Для этого имеется два входа:

  • S — set (установка);
  • R — reset (сброс).

Имеется прямой выход Q, также может быть инверсный выход Q1. Логический уровень на нём всегда противоположен уровню на Q – это бывает удобно при разработке схем.

При подаче положительного уровня на вход S на выходе Q установится логическая единица (если есть инверсный выход, он перейдет на уровень 0). После этого на входе установки сигнал может меняться как угодно – на выходной уровень это не повлияет. До тех пор, пока единица не появится на входе R. Это установит триггер в состояние 0 (1 на инверсном выводе). Теперь изменение сигнала на входе сброса никак не повлияет на дальнейшее состояние элемента.

Логическая схема RS-триггера.

Важно! Вариант, когда на обоих входах присутствует логическая единица, является запретным. Триггер установится в произвольное состояние. При разработке схем такой ситуации надо избегать.

Логическая схема RS-триггера.

RS-триггер можно построить на основе широко распространенных двухвходовых элементов И-НЕ. Такой способ реализуем как на обычных микросхемах, так и внутри программируемых матриц.

Один или оба входа могут быть инверсными. Это означает, что по этим выводам триггер управляется появлением не высокого, а низкого уровня.

Логическая схема RS-триггера с инверсными входами.

Если построить RS-триггер на двухвходовых элементах И-НЕ, то оба входа будут инверсными – управляться подачей логического нуля.

Существует стробируемый вариант RS-триггера. У него имеется дополнительный вход С. Переключение происходит при выполнении двух условий:

  • присутствие высокого уровня на входе Set или Reset;
  • наличие тактового сигнала.

Такой элемент применяют в случаях, когда переключение надо задержать, например, на время окончания переходных процессов.

D-триггеры

D-триггер («прозрачный триггер», «защелка», latch) относится к категории синхронных устройств, тактируемых по входу С. Также имеется вход для данных D (Data). По функциональным возможностям устройство относится к триггерам с приёмом информации по одному входу.

Пока на входе для синхронизации присутствует логическая единица, сигнал на выходе Q повторяет сигнал на входе данных (режим прозрачности). Как только уровень строба перейдет в состояние 0, на выходе Q уровень останется тем же, что был в момент перепада (защелкнется). Так можно зафиксировать входной уровень на входе в любой момент времени. Также существуют D-триггеры с тактированием по фронту. Они защёлкивают сигнал по положительному перепаду строба.

Логическая схема работы D-триггера.

На практике в одной микросхеме могут объединять два типа бистабильных устройств. Например, D и RS-триггер. В этом случае входы Set/Reset являются приоритетными. Если на них присутствует логический ноль, то элемент ведёт себя как обычный D-триггер. При появлении хотя бы на одном входе высокого уровня, выход устанавливается в 0 или 1 независимо от сигналов на входах С и D.

Объединённое исполнение D и RS-триггеров.

Прозрачность D-триггера не всегда является полезным свойством. Чтобы её избежать, применяются двойные элементы (flip-flop, «хлопающий» триггер), они обозначаются литерами TT. Первым триггером служит обычная защёлка, пропускающая входной сигнал на выход. Второй триггер служит элементом памяти. Тактируются оба устройства одним стробом.

Схема TT-триггера.

T-триггеры

T-триггер относится к классу счётных бистабильных элементов. Логика его работы проста – он изменяет своё состояние каждый раз, когда на его вход приходит очередная логическая единица. Если на вход подать импульсный сигнал, выходная частота будет в два раза выше входной. На инверсном выходе сигнал будет противофазен прямому.

Логическая схема работы T-триггера.

Так работает асинхронный Т-триггер. Также существует синхронный вариант. При подаче импульсного сигнала на тактирующий вход и при наличии логической единицы на выводе T, элемент ведёт себя так же, как и асинхронный – делит входную частоту пополам. Если на выводе Т логический ноль, то выход Q устанавливается в низкий уровень независимо от наличия стробов.

Схема работы синхронного T-триггера. JK-триггеры

Этот бистабильный элемент относится к категории универсальных. Он может управляться раздельно по входам. Логика работы JK-триггера похожа на работу RS-элемента. Для установки выхода в единицу используется вход J (Job). Появление высокого уровня на выводе K (Keep) сбрасывает выход в ноль. Принципиальным отличием от RS-триггера является то, что одновременное появление единиц на двух управляющих входах не является запретным. В этом случае выход элемента меняет свое состояние на противоположное.

Логическая схема работы JK-триггера.

Если выходы Job и Keep соединить, то JK-триггер превращается в асинхронный счётный Т-триггер. Когда на объединённый вход подаётся меандр, на выходе будет в два раза меньшая частота. Как и у RS-элемента, существует тактируемый вариант JK-триггера. На практике применяются, в основном, именно стробируемые элементы такого типа.

Практическое использование

Свойство триггеров сохранять записанную информацию даже при снятии внешних сигналов позволяет применять их в качестве ячеек памяти ёмкостью в 1 бит. Из единичных элементов можно построить матрицу для запоминания двоичных состояний – по такому принципу строятся статические оперативные запоминающие устройства (SRAM). Особенностью такой памяти является простая схемотехника, не требующая дополнительных контроллеров. Поэтому такие SRAM применяются в контроллерах и ПЛМ. Но невысокая плотность записи препятствует использованию таких матриц в ПК и других мощных вычислительных системах.

Выше упоминалось использование триггеров в качестве делителей частоты. Бистабильные элементы можно соединять в цепочки и получать различные коэффициенты деления. Та же цепочка может быть использована в качестве счетчика импульсов. Для этого надо считывать с промежуточных элементов состояние выходов в каждый момент времени – получится двоичный код, соответствующий количеству пришедших на вход первого элемента импульсов.

В зависимости от типа примененных триггеров, счетчики могут быть синхронными и асинхронными. По такому же принципу строятся преобразователи последовательного кода в параллельный, но здесь используются только стробируемые элементы. Также на триггерах строятся цифровые линии задержки и другие элементы двоичной техники.

Цифровая линия задержки, с помощью RS-триггера.

RS-триггеры используются в качестве фиксаторов уровня (подавителей дребезга контактов). Если в качестве источников логического уровня применяются механические коммутаторы (кнопки, переключатели), то при нажатии эффект дребезга сформирует множество сигналов место одного. RS-триггер с этим успешно борется.

Область применения бистабильных устройств широка. Круг решаемых с их помощью задач во многом зависит от фантазии конструктора, особенно в сфере нетиповых решений.

Похожие статьи:

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Что такое компаратор напряжения и для чего он нужен

Датчики уровня: типы, характеристики, рекомендации по выбору

Обзор современных протоколов промышленной автоматизации — Modbus, Profinet, EtherCAT и др.

Пневмоавтоматика — применение сжатого воздуха в системах автоматического управления

Что такое операционный усилитель?

Триггеры

Аннотация: В лекции рассказывается о триггерах различных типов, об алгоритмах их работы, параметрах, типовых схемах включения, а также о реализации на их основе некоторых часто встречающихся функций.

Триггеры и регистры являются простейшими представителями цифровых микросхем, имеющих внутреннюю память . Если выходные сигналы логических элементов и комбинационных микросхем однозначно определяются их текущими входными сигналами, то выходные сигналы микросхем с внутренней памятью зависят также еще и от того, какие входные сигналы и в какой последовательности поступали на них в прошлом, то есть они помнят предысторию поведения схемы. Именно поэтому их применение позволяет строить гораздо более сложные и интеллектуальные цифровые устройства, чем в случае простейших микросхем без памяти. Микросхемы с внутренней памятью называются еще последовательными или последовательностными, в отличие от комбинационных микросхем.

Триггеры и регистры сохраняют свою память только до тех пор, пока на них подается напряжение питания. Иначе говоря, их память относится к типу оперативной (в отличие от постоянной памяти и перепрограммируемой постоянной памяти, которым отключение питания не мешает сохранять информацию). После выключения питания и его последующего включения триггеры и регистры переходят в случайное состояние, то есть их выходные сигналы могут устанавливаться как в уровень логической единицы, так и в уровень логического нуля. Это необходимо учитывать при проектировании схем.

Большим преимуществом триггеров и регистров перед другими типами микросхем с памятью является их максимально высокое быстродействие (то есть минимальные времена задержек срабатывания и максимально высокая допустимая рабочая частота). Именно поэтому триггеры и регистры иногда называют также сверхоперативной памятью. Однако недостаток триггеров и регистров в том, что объем их внутренней памяти очень мал, они могут хранить только отдельные сигналы, биты (триггеры) или отдельные коды, байты, слова (регистры).

Триггер можно рассматривать как одноразрядную, а регистр — как многоразрядную ячейку памяти, которая состоит из нескольких триггеров, соединенных параллельно (обычный, параллельный регистр ) или последовательно ( сдвиговый регистр или, что то же самое, регистр сдвига ).

Триггеры

Принцип работы и разновидности триггеров

В основе любого триггера (англ. — «тrigger» или » flip-flop «) лежит схема из двух логических элементов, которые охвачены положительными обратными связями (то есть сигналы с выходов подаются на входы). В результате подобного включения схема может находиться в одном из двух устойчивых состояний, причем находиться сколь угодно долго, пока на нее подано напряжение питания.

Рис. 7.1. Схема триггерной ячейки

Пример такой схемы (так называемой триггерной ячейки) на двух двухвходовых элементах И-НЕ представлен на рис. 7.1. У схемы есть два инверсных входа: –R — сброс (от английского Reset), и –S — установка (от английского Set), а также два выхода: прямой выход Q и инверсный выход –Q.

Для правильной работы схемы отрицательные импульсы должны поступать на ее входы не одновременно. Приход импульса на вход -R переводит выход -Q в состояние единицы, а так как сигнал -S при этом единичный, выход Q становится нулевым. Этот же сигнал Q поступает по цепи обратной связи на вход нижнего элемента. Поэтому даже после окончания импульса на входе -R состояние схемы не изменяется (на Q остается нуль, на -Q остается единица). Точно так же при приходе импульса на вход -S выход Q в единицу, а выход -Q — в нуль. Оба эти устойчивых состояния триггерной ячейки могут сохраняться сколь угодно долго, пока не придет очередной входной импульс, — иными словами, схема обладает памятью.

Если оба входных импульса придут строго одновременно, то в момент действия этих импульсов на обоих выходах будут единичные сигналы, а после окончания входных импульсов выходы случайным образом попадут в одно из двух устойчивых состояний. Точно так же случайным образом будет выбрано одно из двух устойчивых состояний триггерной ячейки при включении питания. Временная диаграмма работы триггерной ячейки показана на рисунке.

Таблица 7.1. Таблица истинности триггерной ячейкиВходы Выходы -R -S Q -Q
0101
1010
11Без изменения
00Не определено

В стандартные серии цифровых микросхем входит несколько типов микросхем триггеров, различающихся методами управления , а также входными и выходными сигналами. На схемах триггеры обозначаются буквой Т. В отечественных сериях микросхем триггеры имеют наименование ТВ, ТМ и ТР в зависимости от типа триггера. Наиболее распространены три типа ( рис. 7.2):

  • RS-триггер (обозначается ТР) — самый простой триггер, но редко используемый (а).
  • JK-триггер (обозначается ТВ) имеет самое сложное управление, также используется довольно редко (б).
  • D-триггер (обозначается ТМ) — наиболее распространенный тип триггера (в).

Примером RS-триггера является микросхема ТР2, в одном корпусе которой находятся четыре RS-триггера . Два триггера имеют по одному входу –R и –S, а два других триггера — по одному входу –R и по два входа –S1 и –S2, объединенных по функции И. Все триггеры имеют только по одному прямому выходу. RS-триггер практически ничем не отличается по своим функциям от триггерной ячейки, рассмотренной ранее (см. рис. 7.1). Отрицательный импульс на входе –R перебрасывает выход в нуль, а отрицательный импульс на входе –S (или на любом из входов –S1 и –S2) перебрасывает выход в единицу. Одновременные сигналы на входах –R и –S переводят выход в единицу, а после окончания импульсов триггер попадает случайным образом в одно из своих устойчивых состояний. Таблица истинности триггера ТР2 с двумя входами установки –S1 и –S2 представлена в табл. 7.2.

Рис. 7.2. Триггеры трех основных типов

Таблица 7.2. Таблица истинности RS-триггера ТР2Входы Выходы -R -S Q -Q
111Без изменения
X011
0X11
1100
X00Не определен
0X0Не определен

JK-триггер значительно сложнее по своей структуре, чем RS-триггер . Он относится к так называемым тактируемым триггерам, то есть он срабатывает по фронту тактового сигнала . Примером может служить показанная на рис. 7.2 микросхема ТВ9, имеющая в одном корпусе два JK-триггера со входами сброса и установки -R и -S. Входы -R и -S работают точно так же, как и в RS-триггере, то есть отрицательный импульс на входе -R устанавливает прямой выход в нуль, а инверсный — в единицу, а отрицательный импульс на входе -S устанавливает прямой выход в единицу, а инверсный — в нуль.

Однако состояние триггера может быть изменено не только этими сигналами, но и сигналами на двух информационных входах J и K и синхросигналом С. Переключение триггера в этом случае происходит по отрицательному фронту сигнала С (по переходу из единицы в нуль) в зависимости от состояний сигналов J и K. При единице на входе J и нуле на входе К по фронту сигнала С прямой выход устанавливается в единицу (обратный — в нуль). При нуле на входе J и единице на входе К по фронту сигнала С прямой выход устанавливается в нуль (обратный — в единицу). При единичных уровнях на обоих входах J и K по фронту сигнала С триггер меняет состояние своих выходов на противоположные (это называется счетным режимом).

Таблица 7.3. Таблица истинности JK-триггера ТВ9Входы Выходы -S -R C J K Q -Q
01ХХХ10
10ХХХ01
00ХХХНе определено
111 to01010
111 to00101
111 to000Не изменяется
111 to011Меняется на проти-воположное
111ХХНе изменяется
110ХХНе изменяется
110 to1ХХНе изменяется

Рис. 7.3. Временная диаграмма работы JK-триггера ТВ9

Таблица истинности триггера ТВ9 представлена в табл. 7.3, а временная диаграмма работы — на рис. 7.3.

Цифровая электроника

Триггер представляет собой устройство с двумя устойчивыми состояниями. Устойчивым называется состояние, в котором устройство в отсутствии внешних воздействий может прибывать сколько угодно долго. В общем случае триггер имеет два выхода: прямой и инверсный. Состояние триггера принято определять по значению потенциала на прямом выходе. Если на прямом выходе имеется потенциал равный логической единице, то триггер находится в единичном состоянии (при этом потенциал инверсного выхода равен логическому нулю). В противном случае триггер находится в нулевом состоянии. В основу классификации потенциальных триггеров, в которых имеется связь по постоянному току между входами и выходами, положены два основных признака: функциональный и способ записи информации в триггер.

Функциональная классификация является наиболее общей и представляет собой классификацию триггеров по виду логического уравнения, характеризующего состояния входов и выходов триггера в момент времени до его срабатывания t n и после t n +1 . В соответствии с функциональной классификацией различают RS-, D-, T- и JK-триггеры.

Классификация по способу записи информации характеризует временную диаграмму работы триггера, т.е. определяет ход процесса записи информации в триггер. По этой классификации триггеры подразделяются на асинхронные и тактируемые. Отличительной особенностью асинхронных триггеров является то, что запись информации в них осуществляется статическим способом, т.е. непосредственно с поступлением информационного сигнала на его вход. Запись информации в тактируемый триггер, имеющий информационные и тактовые входы, осуществляется только при подаче разрешающего или тактирующего импульса. Среди тактируемых триггеров различают триггеры, срабатывающие по уровню (в момент прихода тактирующего сигнала или, что одно и то же, по его переднему фронту), и триггеры с внутренней задержкой, срабатывающие после окончания тактирующего сигнала (по заднему фронту). Такое управление тактируемыми триггерами называется динамическим. Кроме того, тактируемые триггеры подразделяются на однотактные и многотактные в зависимости от числа тактирующих сигналов, необходимых для перевода триггера из одного состояния в другое.

При проектировании устройств с применением триггеров, кроме значения функции, выполняемой триггером, необходимо знать его основные схемотехнические параметры. К таким параметрам относятся как стандартные параметры любой логической микросхемы – это нагрузочная способность, коэффициент объединения по входу, время задержки и т.д., так и индивидуальные:

  1. минимальная длительность входного сигнала — определяет минимально допустимую длительность входного сигнала, при которой еще происходит переключение триггера из одного состояния в другое;
  2. максимальная частота переключения триггера определяется минимально допустимым временным интервалом между двумя последовательными сигналами минимальной длительности.

Закон функционирования триггера удобно отображать с помощью так называемых таблиц переходов, в которых даются состояния входов и выходов триггера в момент времени до его срабатывания t n и после t n +1 , при этом выходное состояние может обозначаться следующим образом:

0 — триггер находится в состоянии Q=0;

1 — триггер находится в состоянии Q=1;

Q — состояние триггера не изменяется при изменении информации на входе;

— состояние триггера изменяется на противоположное при изменении информации на входе;

Х — неопределенное состояние триггера — характеризуется тем, что в процессе действия информационного сигнала на входе логические уровни выходов триггера одинаковы ( или ), а после окончания действия информационного сигнала триггер может оказаться в состояние Q=1 или Q=0 с равной вероятностью.

Перейдем к рассмотрению триггеров различных типов.

RS-триггер. Триггером RS-типа называется логическое устройство с двумя устойчивыми состояниями, имеющее два информационных входа R и S, такие, что при S=1 и R=0 триггер принимает единичное состояние (Q=1), а при S=0, R=1 — нулевое (Q=0). Вход S называется единичным, а R — нулевым. Принцип работы RS-триггера можно задать таблицей переходов, где Q n – исходное состояние триггера:

Для того, чтобы найти логическое уравнение RS-триггера, преобразуем таблицу переходов к виду, в котором состояние Q n определим конкретными значениями и представим его в виде входной переменной:

Запишем СДНФ для функции Q n +1 (неопределенные состояние не учитываются)

Для минимизации СДНФ заполним диаграмму Вейча, в которой отметим также неопределенные значения функции Q n +1 ( рис. 5.2,а ). Из диаграммы видно, что в результате склейки можно получить две простые импликанты и. Так как функция является частично определенной, то для избавления от переменной в импликанте , можно неопределенные значения в диаграмме заменить единичными значениями и произвести склейку всего одной переменной S n ( рис. 5.2,б ). МДНФ, таким образом примет вид, который и будет соответствовать логическому уравнение RS-триггера

Рис. 5.2. Диаграммы Вейча для асинхронного RS-триггера.

Полученное уравнение задает работу асинхронного RS-триггера. Состояние такого триггера определяется только значениями сигналов R и S. Асинхронный RS-триггер можно построить на логических элементах И-НЕ, ИЛИ-НЕ. Преобразуем логическое уравнение асинхронного RS-триггера, используя законы отрицания алгебры логики:

Для реализации триггера на элементах ИЛИ-НЕ проведем отрицание обеих частей полученного уравнения

Таким образом, сигнал на инвертирующем выходе RS-триггера — это сигнал на выходе элемента ИЛИ-НЕ, на один вход которого подан сигнал S, а на второй — сигнал с выхода другого элемента ИЛИ-НЕ ( рис. 5.3,а ).

Рис. 5.3. Структурные схемы асинхронных RS-триггеров на базе элементов ИЛИ-НЕ, И-НЕ и УГО асинхронного RS-триггера с инверсными входами.

Для реализации RS-триггера на элементах И-НЕ, необходимо выполнить следующие преобразования:

Структурная схема асинхронного RS-триггера, соответствующая полученному уравнению, изображена на рис. 5.3,б , а условное графическое изображение – на рис. 5.3,в . Из рисунка видно, что на вход триггера на элементах И-НЕ сигналы R и S необходимо подавать в инверсном виде.

В качестве самостоятельных устройств асинхронные RS-триггеры находят ограниченное применение, но являются базовыми схемами для более сложных триггерных устройств. В устройствах цифровой обработки находят применение тактируемые RS-триггеры, которые называются еще синхронными. Эти триггеры, кроме входов установки R и S, имеют вход разрешения записи C. Срабатывание синхронного триггера происходит только при наличии активного сигнала на этом входе. Работа синхронного RS-триггера задается таблицей переходов:

Из таблицы видно, что до тех пор, пока сигнал C n имеет значение логического нуля, триггер сохраняет свое состояние неизменным. Как только C n становится равным логической единицы, работа синхронного триггера разрешается, и его состояния соответствуют состояниям асинхронного триггера. Алгоритм нахождения логической функции синхронного RS-триггера аналогичен алгоритму нахождения логической функции асинхронного RS-триггера. Преобразуем таблицу переходов к виду:

Заполним диаграмму Вейча с учетом неопределенных состояний ( рис. 5.4,а ). С целью упрощения МДНФ зададим вместо неопределенных значений единичные и найдем простые импликанты путем склеивания, как это показано на рис. 5.4,б . На рисунке специально не была произведена склейка импликанты с целью соблюдения аналогии ФАЛ асинхронного и синхронного RS-триггеров.

Рис. 5.4. Диаграммы Вейча для синхронного RS-триггера.

Согласно диаграмме запишем минимальную ФАЛ и выполним следующее преобразование

Полученная ФАЛ содержит два слагаемых. Первое слагаемое представляет собой логическою конъюнкцию инверсного значения сигнала тактирования и сигнала состояния триггера до срабатывания, а второе – логическую конъюнкцию прямого значения сигнала тактирования и ФАЛ асинхронного RS-триггера.

Для реализации структурной схемы синхронного RS-триггера необходимо сигналы установки S и R асинхронного триггера стробировать сигналом разрешения C. Сделать это можно, используя логические элементы И, либо И-НЕ. В первом случае стробированные сигналы R и S будут представлены в прямом виде, поэтому их необходимо подавать на схему асинхронного RS-триггера на элементах ИЛИ-НЕ ( рис. 5.5,а ). Во втором случае сигналы R и S окажутся проинвертированными. Поэтому в качестве асинхронного следует выбрать триггер на базе элементов И-НЕ ( рис. 5.5,б ).

Рис. 5.5. Варианты структурных схем синхронных RS-триггеров.

Часто синхронные триггеры любых типов имеют дополнительные входы асинхронной установки в нуль или единицу. Структурная схема такого синхронного RS-триггера приведена на рис. 5.6,а , а его условное графическое обозначение – на рис. 5.6,б .

Рис. 5.6. Структурная схема синхронно RS-триггера с входами асинхронной установки и его условное графическое обозначение.

Поскольку триггер, изображенный на структурной схеме, реализован на элементах И-НЕ, то сигналы асинхронной установки R и S должны иметь инверсные активные уровни. Кроме того, поскольку сигналы асинхронной установки подаются непосредственно на выходной каскад (асинхронный RS-триггер), то они имеют больший приоритет перед остальными сигналами триггера.

D-триггер. D-триггер относится к одновходовым триггерам. Асинхронный D-триггер имеет один вход D и прямой и инверсный выходы Q и . Работа асинхронного D-триггера задается таблицей переходов:

Соответствующее таблице истинности логическое уравнение имеет вид

Логическое уравнение показывает, что состояние D-триггера в момент времени t n +1 соответствует значению сигнала на D-входе в момент времени t n , т.е. с помощью D-триггера осуществляется задержка входного сигнала. Отсюда второе название асинхронного D-триггера – триггер задержки. Асинхронный D-триггер не имеет практического применения, поскольку его функцию может выполнять схема из последовательного соединения двух инверторов. Наибольший интерес представляет тактируемый (синхронный) D-триггер, работа которого описывается таблицей переходов:

Аналогично, как и в случае с RS-триггером, можно составить логическое уравнение синхронного D-триггера, соответствующее приведенной таблице переходов:

Из уравнения видно, что при наличии тактирующего сигнала (С=1), триггер переходит в состояние Q n +1 =D n ,а при отсутствии тактирующего сигнала (С=0), триггер сохраняет предыдущее состояние Q n +1 =Q n . Иными словами, синхронный D-триггер осуществляет запись информационного разряда по активному уровню сигнала C с последующим его хранением. Отсюда синхронный D-триггер имеет другое название – триггер-защелка.

Рассмотрим вариант реализации синхронного D-триггера на элементах И-НЕ. Для этого выполним следующие преобразования над задающей его работу ФАЛ

Полученное уравнение совпадает по своей структуре с уравнением для асинхронного RS-триггера, при условии, что , . Тогда очевидно, что D-триггер представляет собой RS-триггер, на информационные входы которого поданы сигналы в соответствии с полученными выражениями. Поскольку сигналы R и S на вход RS-триггера на базе элементов И-НЕ должны подаваться в инверсном виде, то для получения D-триггера, на входы RS-триггера необходимо подавать . Преобразуем выражение для к виду:

С учетом полученных выражений, структурная схема синхронного D-триггера на базе элементов И-НЕ может быть представлена совокупностью двух каскадов. Первый выполняет функцию формирования сигналов и , а второй – асинхронного RS-триггера ( рис. 5.7,а ). На рис. 5.7,б показано условное графическое обозначение D-триггера.

Рис. 5.7. Структурная схема синхронного D-триггера на элементах И-НЕ и его УГО.

Т-триггер. Триггер T-типа является одновходовым устройством с двумя устойчивыми состояниями, изменяющимися каждый раз на противоположные при подаче на вход Т управляющего сигнала. Работа Т-триггера задается таблицей переходов:

Составленное по таблице переходов СДНФ для Q n +1 уже имеет минимальный вид

Характерной его особенностью является то, что частота изменения потенциала на его выходах в два раза меньше частоты сигналов на входе T ( рис. 5.8 ). Это свойство используется при построении двоичных счетчиков. Отсюда второе название T-триггера – счетный триггер.

Рис. 5.8. Диаграммы входного и выходного потенциалов T-триггера.

Структуру T-триггера можно определить путем преобразования его логической функции к удобному для синтеза в заданном базисе виду. Однако, из анализа работы RS-триггера очевидно, что в том случае, если он находился в единичном состоянии Q=1, то для сброса его в нулевое состояние необходимо сигнал с прямого выхода Q подать на вход R сброса в нуль. Если же RS-триггер изначально находился в нулевом состоянии, т.е. и , то для приведения его в единичное состояние необходимо сигнал с выхода подать на вход S установки в единицу. Достигается это путем введения обратных связей ( рис. 5.9,а ). При этом, роль входа Т будет выполнять вход разрешения C синхронного RS-триггера.

Т-триггер можно построить и на базе D-триггера. Если в логическом уравнении синхронного D-триггера принять , тогда уравнение запишется в виде

Полученное выражение является ни чем иным, как логическим уравнением T-триггера при условии, что функцию входа T выполняет вход разрешения C D-триггера. При этом на вход D необходимо подавать сигнал с инверсного выхода ( рис. 5.9,б ).

Рис. 5.9. Синтез Т-триггера на базе синхронного RS-триггера и D-триггера.

Рассмотренные структуры Т-триггера являются практически нецелесообразными, поскольку характеризуются нестабильностью работы. Действительно, в течение всего времени, пока на входе T присутствует активный уровень сигнала, будет происходить непрерывная смена его состояний на противоположные с частотой, равной обратной величине времени задержки триггера. В результате возникает колебательный процесс. Причиной этого явления служит то, что Т-триггер, обладая обратными связями, принимает информацию как из внешней среды, так и со своих собственных выходов. Поэтому для устойчивой работы Т-триггера необходимо разделить во времени функции приема тактирующего сигнала Т и фиксации на входах R, S или D сигналов с соответствующих выходов Q и . Для этого в структуру Т-триггера вводится дополнительный второй запоминающий элемент на базе RS- или D-триггера. На синхронизирующий вход этого элемента тактовый сигнал подается в инверсном виде по отношению к тактовому сигналу первого запоминающего элемента. Подобная организация структур триггерных устройств называется двухступенчатой.

Пример двухступенчатого Т-триггера на базе двух синхронных RS-триггеров приведен на рис. 5.10,а , а на основе двух D-триггеров – на рис. 5.10,б . Из рисунка видно, что когда на синхронизирующем входе первого триггера в двухступенчатой структуре действует нулевой уровень тактирующего сигнала Т, он хранит свое состояние Q1 и . В это время на синхронизирующий вход второго триггера поступает инвертированный сигнал Т, т.е. имеющий уровень логической единицы. В результате второй триггер принимает состояние первого, т.е. Q1=Q2 и =. Запись в первый триггер при этом запрещена. Как только тактирующий сигнал Т примет уровень логической единицы, произойдет запись информации из второго триггера в первый. В результате состояние первого триггера изменится на противоположное. При этом запись во второй триггер производиться не будет, поскольку на его входе будет действовать нулевой уровень сигнала разрешения записи. Процесс будет повторяться с приходом каждого тактирующего импульса, что обеспечит устойчивую работу устройства. В условных графических обозначениях всех двухступенчатых триггеров принято в обозначении функции элемента указывать два символа «ТТ», как это показано на примере двухступенчатого Т-триггера ( рис. 5.10,в ). Вход Т Т-триггера принято называть счетным.

Рис. 5.10. Двухступенчатый T-триггер на базе синхронных RS-триггеров и D-триггеров и его условное графическое обозначение.

JK-триггер. JK-триггер относится к двухвходовым устройствам и функционирует по правилам, похожим на правила функционирования RS-триггера. Отличие состоит в том, что в JK-триггере все состояния являются определенными. Можно провести аналогию входов JK- и RS-триггеров: вход K JK-триггера выполняет функцию входа R RS-триггера, а вход J JK-триггера – функцию входа S RS-триггера. При этом, если в RS-триггере комбинация единичных значений входов R и S является запрещенной, то в случае аналогичной комбинации J— и K-входов, JK-триггер меняет свое состояние на противоположное. Правило работы асинхронного JK-триггера можно сформулировать следующей таблицей переходов:

Триггеры. Синхронные и асинхронные триггеры. Закон функционирования каждого вида триггера. Установка триггера в состояние 1 или О , страница 2

Разновидностью RS-триггеров являются триггеры S , R и E , представляющие собойлогические устройства с двумя устойчивыми состояниями и двумя информационными входамиS и R . При комбинации RS = 1 S-триггер ( рис.4 ) устанавливается в единичное состояние, R-триггер (рис. 5) — в нулевое, Е -триггер (рис. 6) не изменяет свое состояние.

Д -триггер (триггер задержки) — логическое устройство с двумя устойчивыми состояниямии одним информационным входом Д. Схема синхронного Д -триггера на элементах И-НЕ приведенана рис.7. Закон функционирования Д -триггера описывается таблицей состояний ( табл.2 ).

Из табл.2 следует , что состояние триггера после его срабатывания совпадает с состоянием его входа до срабатывания.

При отсутствии ТИ ( Д = С = 0 или Д = 1,С = 0 ) вентили В3 и В4 закрыты ,и независимоот информации на входе Д состояние триггераQ = 0. При Д = С = 1 на входе вентиля В3формируется логический 0 , который , поступаяна вход вентиля В1 , устанавливает триггер в состояние Q = 1 ,а по входу вентиля В4 блокируетего включение. По окончании действия информационного сигнала ( Д = О , С = 0 ) вентиль В3 закрывается , логическая 1 с его выхода открывает вентиль В4 и логический 0 последнего устанавливает триггер в состояние Q = 0. Сигнал , поданный на Д -вход , задерживается до поступления ТИ , поэтому Д -триггер еще называют триггером задержки.

Разновидностью Д -триггера является ДV -триггер , который дополнительно к Д -входу имеетуправляющий V-вход (на рис.4 показан штриховой линией ). При V = 1 триггер функционируеткак Д -триггер , а при V = 0 сохраняет исходное состояние независимо от смены сигнала на Д -входе.

Цифровая электроника

Триггер представляет собой устройство с двумя устойчивыми состояниями. Устойчивым называется состояние, в котором устройство в отсутствии внешних воздействий может прибывать сколько угодно долго. В общем случае триггер имеет два выхода: прямой и инверсный. Состояние триггера принято определять по значению потенциала на прямом выходе. Если на прямом выходе имеется потенциал равный логической единице, то триггер находится в единичном состоянии (при этом потенциал инверсного выхода равен логическому нулю). В противном случае триггер находится в нулевом состоянии. В основу классификации потенциальных триггеров, в которых имеется связь по постоянному току между входами и выходами, положены два основных признака: функциональный и способ записи информации в триггер.

Функциональная классификация является наиболее общей и представляет собой классификацию триггеров по виду логического уравнения, характеризующего состояния входов и выходов триггера в момент времени до его срабатывания t n и после t n +1 . В соответствии с функциональной классификацией различают RS-, D-, T- и JK-триггеры.

Классификация по способу записи информации характеризует временную диаграмму работы триггера, т.е. определяет ход процесса записи информации в триггер. По этой классификации триггеры подразделяются на асинхронные и тактируемые. Отличительной особенностью асинхронных триггеров является то, что запись информации в них осуществляется статическим способом, т.е. непосредственно с поступлением информационного сигнала на его вход. Запись информации в тактируемый триггер, имеющий информационные и тактовые входы, осуществляется только при подаче разрешающего или тактирующего импульса. Среди тактируемых триггеров различают триггеры, срабатывающие по уровню (в момент прихода тактирующего сигнала или, что одно и то же, по его переднему фронту), и триггеры с внутренней задержкой, срабатывающие после окончания тактирующего сигнала (по заднему фронту). Такое управление тактируемыми триггерами называется динамическим. Кроме того, тактируемые триггеры подразделяются на однотактные и многотактные в зависимости от числа тактирующих сигналов, необходимых для перевода триггера из одного состояния в другое.

При проектировании устройств с применением триггеров, кроме значения функции, выполняемой триггером, необходимо знать его основные схемотехнические параметры. К таким параметрам относятся как стандартные параметры любой логической микросхемы – это нагрузочная способность, коэффициент объединения по входу, время задержки и т.д., так и индивидуальные:

  1. минимальная длительность входного сигнала — определяет минимально допустимую длительность входного сигнала, при которой еще происходит переключение триггера из одного состояния в другое;
  2. максимальная частота переключения триггера определяется минимально допустимым временным интервалом между двумя последовательными сигналами минимальной длительности.

Закон функционирования триггера удобно отображать с помощью так называемых таблиц переходов, в которых даются состояния входов и выходов триггера в момент времени до его срабатывания t n и после t n +1 , при этом выходное состояние может обозначаться следующим образом:

0 — триггер находится в состоянии Q=0;

1 — триггер находится в состоянии Q=1;

Q — состояние триггера не изменяется при изменении информации на входе;

— состояние триггера изменяется на противоположное при изменении информации на входе;

Х — неопределенное состояние триггера — характеризуется тем, что в процессе действия информационного сигнала на входе логические уровни выходов триггера одинаковы ( или ), а после окончания действия информационного сигнала триггер может оказаться в состояние Q=1 или Q=0 с равной вероятностью.

Перейдем к рассмотрению триггеров различных типов.

RS-триггер. Триггером RS-типа называется логическое устройство с двумя устойчивыми состояниями, имеющее два информационных входа R и S, такие, что при S=1 и R=0 триггер принимает единичное состояние (Q=1), а при S=0, R=1 — нулевое (Q=0). Вход S называется единичным, а R — нулевым. Принцип работы RS-триггера можно задать таблицей переходов, где Q n – исходное состояние триггера:

Для того, чтобы найти логическое уравнение RS-триггера, преобразуем таблицу переходов к виду, в котором состояние Q n определим конкретными значениями и представим его в виде входной переменной:

Запишем СДНФ для функции Q n +1 (неопределенные состояние не учитываются)

Для минимизации СДНФ заполним диаграмму Вейча, в которой отметим также неопределенные значения функции Q n +1 ( рис. 5.2,а ). Из диаграммы видно, что в результате склейки можно получить две простые импликанты и. Так как функция является частично определенной, то для избавления от переменной в импликанте , можно неопределенные значения в диаграмме заменить единичными значениями и произвести склейку всего одной переменной S n ( рис. 5.2,б ). МДНФ, таким образом примет вид, который и будет соответствовать логическому уравнение RS-триггера

Рис. 5.2. Диаграммы Вейча для асинхронного RS-триггера.

Полученное уравнение задает работу асинхронного RS-триггера. Состояние такого триггера определяется только значениями сигналов R и S. Асинхронный RS-триггер можно построить на логических элементах И-НЕ, ИЛИ-НЕ. Преобразуем логическое уравнение асинхронного RS-триггера, используя законы отрицания алгебры логики:

Для реализации триггера на элементах ИЛИ-НЕ проведем отрицание обеих частей полученного уравнения

Таким образом, сигнал на инвертирующем выходе RS-триггера — это сигнал на выходе элемента ИЛИ-НЕ, на один вход которого подан сигнал S, а на второй — сигнал с выхода другого элемента ИЛИ-НЕ ( рис. 5.3,а ).

Рис. 5.3. Структурные схемы асинхронных RS-триггеров на базе элементов ИЛИ-НЕ, И-НЕ и УГО асинхронного RS-триггера с инверсными входами.

Для реализации RS-триггера на элементах И-НЕ, необходимо выполнить следующие преобразования:

Структурная схема асинхронного RS-триггера, соответствующая полученному уравнению, изображена на рис. 5.3,б , а условное графическое изображение – на рис. 5.3,в . Из рисунка видно, что на вход триггера на элементах И-НЕ сигналы R и S необходимо подавать в инверсном виде.

В качестве самостоятельных устройств асинхронные RS-триггеры находят ограниченное применение, но являются базовыми схемами для более сложных триггерных устройств. В устройствах цифровой обработки находят применение тактируемые RS-триггеры, которые называются еще синхронными. Эти триггеры, кроме входов установки R и S, имеют вход разрешения записи C. Срабатывание синхронного триггера происходит только при наличии активного сигнала на этом входе. Работа синхронного RS-триггера задается таблицей переходов:

Из таблицы видно, что до тех пор, пока сигнал C n имеет значение логического нуля, триггер сохраняет свое состояние неизменным. Как только C n становится равным логической единицы, работа синхронного триггера разрешается, и его состояния соответствуют состояниям асинхронного триггера. Алгоритм нахождения логической функции синхронного RS-триггера аналогичен алгоритму нахождения логической функции асинхронного RS-триггера. Преобразуем таблицу переходов к виду:

Заполним диаграмму Вейча с учетом неопределенных состояний ( рис. 5.4,а ). С целью упрощения МДНФ зададим вместо неопределенных значений единичные и найдем простые импликанты путем склеивания, как это показано на рис. 5.4,б . На рисунке специально не была произведена склейка импликанты с целью соблюдения аналогии ФАЛ асинхронного и синхронного RS-триггеров.

Рис. 5.4. Диаграммы Вейча для синхронного RS-триггера.

Согласно диаграмме запишем минимальную ФАЛ и выполним следующее преобразование

Полученная ФАЛ содержит два слагаемых. Первое слагаемое представляет собой логическою конъюнкцию инверсного значения сигнала тактирования и сигнала состояния триггера до срабатывания, а второе – логическую конъюнкцию прямого значения сигнала тактирования и ФАЛ асинхронного RS-триггера.

Для реализации структурной схемы синхронного RS-триггера необходимо сигналы установки S и R асинхронного триггера стробировать сигналом разрешения C. Сделать это можно, используя логические элементы И, либо И-НЕ. В первом случае стробированные сигналы R и S будут представлены в прямом виде, поэтому их необходимо подавать на схему асинхронного RS-триггера на элементах ИЛИ-НЕ ( рис. 5.5,а ). Во втором случае сигналы R и S окажутся проинвертированными. Поэтому в качестве асинхронного следует выбрать триггер на базе элементов И-НЕ ( рис. 5.5,б ).

Рис. 5.5. Варианты структурных схем синхронных RS-триггеров.

Часто синхронные триггеры любых типов имеют дополнительные входы асинхронной установки в нуль или единицу. Структурная схема такого синхронного RS-триггера приведена на рис. 5.6,а , а его условное графическое обозначение – на рис. 5.6,б .

Рис. 5.6. Структурная схема синхронно RS-триггера с входами асинхронной установки и его условное графическое обозначение.

Поскольку триггер, изображенный на структурной схеме, реализован на элементах И-НЕ, то сигналы асинхронной установки R и S должны иметь инверсные активные уровни. Кроме того, поскольку сигналы асинхронной установки подаются непосредственно на выходной каскад (асинхронный RS-триггер), то они имеют больший приоритет перед остальными сигналами триггера.

D-триггер. D-триггер относится к одновходовым триггерам. Асинхронный D-триггер имеет один вход D и прямой и инверсный выходы Q и . Работа асинхронного D-триггера задается таблицей переходов:

Соответствующее таблице истинности логическое уравнение имеет вид

Логическое уравнение показывает, что состояние D-триггера в момент времени t n +1 соответствует значению сигнала на D-входе в момент времени t n , т.е. с помощью D-триггера осуществляется задержка входного сигнала. Отсюда второе название асинхронного D-триггера – триггер задержки. Асинхронный D-триггер не имеет практического применения, поскольку его функцию может выполнять схема из последовательного соединения двух инверторов. Наибольший интерес представляет тактируемый (синхронный) D-триггер, работа которого описывается таблицей переходов:

Аналогично, как и в случае с RS-триггером, можно составить логическое уравнение синхронного D-триггера, соответствующее приведенной таблице переходов:

Из уравнения видно, что при наличии тактирующего сигнала (С=1), триггер переходит в состояние Q n +1 =D n ,а при отсутствии тактирующего сигнала (С=0), триггер сохраняет предыдущее состояние Q n +1 =Q n . Иными словами, синхронный D-триггер осуществляет запись информационного разряда по активному уровню сигнала C с последующим его хранением. Отсюда синхронный D-триггер имеет другое название – триггер-защелка.

Рассмотрим вариант реализации синхронного D-триггера на элементах И-НЕ. Для этого выполним следующие преобразования над задающей его работу ФАЛ

Полученное уравнение совпадает по своей структуре с уравнением для асинхронного RS-триггера, при условии, что , . Тогда очевидно, что D-триггер представляет собой RS-триггер, на информационные входы которого поданы сигналы в соответствии с полученными выражениями. Поскольку сигналы R и S на вход RS-триггера на базе элементов И-НЕ должны подаваться в инверсном виде, то для получения D-триггера, на входы RS-триггера необходимо подавать . Преобразуем выражение для к виду:

С учетом полученных выражений, структурная схема синхронного D-триггера на базе элементов И-НЕ может быть представлена совокупностью двух каскадов. Первый выполняет функцию формирования сигналов и , а второй – асинхронного RS-триггера ( рис. 5.7,а ). На рис. 5.7,б показано условное графическое обозначение D-триггера.

Рис. 5.7. Структурная схема синхронного D-триггера на элементах И-НЕ и его УГО.

Т-триггер. Триггер T-типа является одновходовым устройством с двумя устойчивыми состояниями, изменяющимися каждый раз на противоположные при подаче на вход Т управляющего сигнала. Работа Т-триггера задается таблицей переходов:

Составленное по таблице переходов СДНФ для Q n +1 уже имеет минимальный вид

Характерной его особенностью является то, что частота изменения потенциала на его выходах в два раза меньше частоты сигналов на входе T ( рис. 5.8 ). Это свойство используется при построении двоичных счетчиков. Отсюда второе название T-триггера – счетный триггер.

Рис. 5.8. Диаграммы входного и выходного потенциалов T-триггера.

Структуру T-триггера можно определить путем преобразования его логической функции к удобному для синтеза в заданном базисе виду. Однако, из анализа работы RS-триггера очевидно, что в том случае, если он находился в единичном состоянии Q=1, то для сброса его в нулевое состояние необходимо сигнал с прямого выхода Q подать на вход R сброса в нуль. Если же RS-триггер изначально находился в нулевом состоянии, т.е. и , то для приведения его в единичное состояние необходимо сигнал с выхода подать на вход S установки в единицу. Достигается это путем введения обратных связей ( рис. 5.9,а ). При этом, роль входа Т будет выполнять вход разрешения C синхронного RS-триггера.

Т-триггер можно построить и на базе D-триггера. Если в логическом уравнении синхронного D-триггера принять , тогда уравнение запишется в виде

Полученное выражение является ни чем иным, как логическим уравнением T-триггера при условии, что функцию входа T выполняет вход разрешения C D-триггера. При этом на вход D необходимо подавать сигнал с инверсного выхода ( рис. 5.9,б ).

Рис. 5.9. Синтез Т-триггера на базе синхронного RS-триггера и D-триггера.

Рассмотренные структуры Т-триггера являются практически нецелесообразными, поскольку характеризуются нестабильностью работы. Действительно, в течение всего времени, пока на входе T присутствует активный уровень сигнала, будет происходить непрерывная смена его состояний на противоположные с частотой, равной обратной величине времени задержки триггера. В результате возникает колебательный процесс. Причиной этого явления служит то, что Т-триггер, обладая обратными связями, принимает информацию как из внешней среды, так и со своих собственных выходов. Поэтому для устойчивой работы Т-триггера необходимо разделить во времени функции приема тактирующего сигнала Т и фиксации на входах R, S или D сигналов с соответствующих выходов Q и . Для этого в структуру Т-триггера вводится дополнительный второй запоминающий элемент на базе RS- или D-триггера. На синхронизирующий вход этого элемента тактовый сигнал подается в инверсном виде по отношению к тактовому сигналу первого запоминающего элемента. Подобная организация структур триггерных устройств называется двухступенчатой.

Пример двухступенчатого Т-триггера на базе двух синхронных RS-триггеров приведен на рис. 5.10,а , а на основе двух D-триггеров – на рис. 5.10,б . Из рисунка видно, что когда на синхронизирующем входе первого триггера в двухступенчатой структуре действует нулевой уровень тактирующего сигнала Т, он хранит свое состояние Q1 и . В это время на синхронизирующий вход второго триггера поступает инвертированный сигнал Т, т.е. имеющий уровень логической единицы. В результате второй триггер принимает состояние первого, т.е. Q1=Q2 и =. Запись в первый триггер при этом запрещена. Как только тактирующий сигнал Т примет уровень логической единицы, произойдет запись информации из второго триггера в первый. В результате состояние первого триггера изменится на противоположное. При этом запись во второй триггер производиться не будет, поскольку на его входе будет действовать нулевой уровень сигнала разрешения записи. Процесс будет повторяться с приходом каждого тактирующего импульса, что обеспечит устойчивую работу устройства. В условных графических обозначениях всех двухступенчатых триггеров принято в обозначении функции элемента указывать два символа «ТТ», как это показано на примере двухступенчатого Т-триггера ( рис. 5.10,в ). Вход Т Т-триггера принято называть счетным.

Рис. 5.10. Двухступенчатый T-триггер на базе синхронных RS-триггеров и D-триггеров и его условное графическое обозначение.

JK-триггер. JK-триггер относится к двухвходовым устройствам и функционирует по правилам, похожим на правила функционирования RS-триггера. Отличие состоит в том, что в JK-триггере все состояния являются определенными. Можно провести аналогию входов JK- и RS-триггеров: вход K JK-триггера выполняет функцию входа R RS-триггера, а вход J JK-триггера – функцию входа S RS-триггера. При этом, если в RS-триггере комбинация единичных значений входов R и S является запрещенной, то в случае аналогичной комбинации J— и K-входов, JK-триггер меняет свое состояние на противоположное. Правило работы асинхронного JK-триггера можно сформулировать следующей таблицей переходов:

Оцените статью
TutShema
Добавить комментарий