Каким образом включают в электрическую цепь амперметр для измерения силы электрического тока

Амперметр — это электроизмерительный прибор, который предназначен для измерения силы электрического тока в каком-нибудь участке электрической цепи. Эта величина задается единицах, называемых амперами, отсюда и название прибора — «Амперметр». На практике значения электрического тока измеряются в различных диапазонах — от микроампер (мкА) до килоампер (кА).

Амперметр — это тот же гальванометр, только приспособленный для измерения силы тока, его шкала проградуирована в амперах.

На схемах амперметр изображают кружком с буквой А в центре.

Для измерения силы тока можно использовать и мультиметр. Перед измерением необходимо прочитать инструкцию к конкретной модели мультиметра, чтобы его правильно настроить и подключить в электрическую цепь.

Как работает амперметр?

Существует два типа амперметров: аналоговые, показывающие значение путем отклонения стрелки механического устройства, и все чаще использующиеся в настоящее время цифровые приборы, оснащенные сложными электронными схемами.

При изготовлении аналоговых амперметров необходимо использовать эффекты, зависящие от величины электрического тока. Чаще всего они связаны с созданием магнитного поля проводником, в котором течет электрический ток. Чем выше сила тока, тем больше эффект, производимый данным явлением.

Каждый аналоговый амперметр имеет подвижную и неподвижную части. К подвижной части прикреплена стрелка, которая перемещается по шкале и позволяет считывать показания прибора. Чтобы избежать ошибок при снятии показаний, которые вызваны эффектом параллакса, следует смотреть на стрелку под прямым углом к ​​шкале, чему способствует зеркало, расположенное рядом со шкалой (см. рисунок 1).

Индикаторный микроамперметр с зеркалом

Типы амперметров их устройство и принцип работы

Каждый тип амперметра использует различные физические явления, связанные с протеканием электрического тока через проводник. Некоторые из них перечислены ниже.

Магнитоэлектрический амперметр

  • На проводник с электрическим током, помещенный в магнитное поле, действует электродинамическая сила, величина которой зависит от абсолютной величины электрического тока, длины проводника и величины магнитной индукции.

Конструкция магнитоэлектрического амперметра, основанного на этом явлении, показана на рис. 2. Вращающаяся катушка, через которую протекает измеряемый электрический ток, отмечена красным цветом. Части катушки, перпендикулярные плоскости рисунка, используются в качестве проводника.

Магнитное поле создается постоянным магнитом, сформированным таким образом, чтобы поле было радиальным. Таким образом, каждый фрагмент взаимодействующего проводника всегда перпендикулярен вектору индукции магнитного поля, независимо от положения катушки с указателем.

Включение амперметра в цепь

Схема работы магнитоэлектрического амперметра

Формула, описывающая силу магнитного взаимодействия, действующую на прямолинейный проводник с током, помещенным в магнитное поле, имеет вид: F = I * L * B (1), где:

  • L — вектор вдоль проводника с величиной, равной его длине, и направлением — таким же как и направление протекания электрического тока;
  • B — вектор индукции магнитного поля.

Согласно этой формуле, на токоведущие проводники перпендикулярно плоскости (см. рисунок 2) действует сила, направление которой перпендикулярно как этим проводникам, так и вектору индукции магнитного поля. Эта сила вызывает вращение катушки. Значение силы, согласно формуле (1), равно F = I * l * B * sin α (2), где:

где α — угол между направлениями вектора L и вектора индукции магнитного поля B . Как было сказано выше, этот угол всегда равен 90 0 , если магнитное поле радиальное.

Пружина, обозначенная зеленым цветом на рисунке 2, противодействует вращению катушки таким образом, что устанавливается равновесное положение в зависимости от силы тока, значение которой можно определить по стрелке, расположенной над шкалой амперметра.

Таким образом, описанный амперметр показывает направление протекания электрического тока. Его можно использовать только для постоянного или однонаправленного тока. Такова, в частности, конструкция гальванометров.

Электродинамический амперметр

  • Две катушки, по которым течет электрический ток, взаимодействуют друг с другом с помощью магнитного взаимодействия.

Электродинамический амперметр состоит из двух катушек — подвижной и неподвижной (см. рисунок 3).

Устройство электродинамического амперметра

Если через обе катушки протекает электрический ток, значение которого мы хотим измерить, магнитные поля будут взаимодействовать, вызывая отклонение подвижной катушки и прикрепленного к ней указателя (стрелки). Этот эффект не зависит от направления протекания электрического тока. Электродинамический амперметр может использоваться для измерения постоянного и переменного тока, включая быстро меняющийся ток. Это точные устройства, но дорогие. Чаще всего они используются в лабораториях в качестве эталонных измерительных приборов.

Индукционный амперметр

  • В металлическом вращающемся диске вихревые токи индуцируются под воздействием магнитных полей, создаваемых катушками, в которых протекает переменный электрический ток.

Электрические токи I1 и I2 (см. рисунок 4), протекающие в катушках электромагнитов, создают пульсирующие магнитные потоки, которые вызывают вихревые токи в диске, помещенном в воздушный зазор электромагнитов.

Вихревые токи также создают магнитное поле, которое отталкивающе взаимодействует с полем катушки, заставляя диск вращаться.

Индукционный амперметр

Индуктивный амперметр можно использовать только для измерения переменного тока, т.к. постоянный ток не будет вызывать вихревые токи в диске. Этот тип конструкции в настоящее время используются только в качестве счетчиков электроэнергии.

Амперметр подключается к электрической цепи последовательно

То есть у нас есть провод, по нему течет электрический ток от источника этого самого тока к потребителю, которым может выступать электрический прибор.

Чтобы измерить ток амперметром, нам необходимо обесточить (отключить) источник питания. Затем необходимо разорвать цепь – в прямом и переносном смысле. Грубо говоря, разрезать провод.

Теперь у нас получится два провода. Берем амперметр, подключаем к прибору две половины разрезанного провода. Нужно учесть тот факт, что ток, протекающий в цепи должен быть меньше максимально измеряемого тока прибора. Максимально измеряемый ток прибора должен быть написан на самом приборе или в документации к нему.

Максимальный ток в цепи можно рассчитать, зная напряжение, нагрузку и сечение провода. Провода должны быть изолированы (покрыты изоляцией), а на концах зачищены.

После того, как провода подключены и надежно закреплены в амперметре, можно включать питание и прибор покажет величину тока в цепи, который и пройдет через амперметр.

Но так никто не делает, потому что разрезанные провода до добра не доводят.

У амперметра малое внутреннее сопротивление, это сделано для того, чтобы оно минимально влияло на величину измеряемого тока. При подключении амперметра в цепь переменного тока не имеет значения, куда подключать прибор.

При подключении амперметра в цепь постоянного тока, если стрелка будет отклоняться в другую сторону, или же будет показывать ноль – следует поменять полярность, поменять провода местами.

Подключение амперметра через шунт

Если ток в цепи окажется больше, чем ток прибора, то можно рассчитать и использовать шунт для измерения тока большей величины. В этом случае цепь разделится на две ветви. У одной будет малое сопротивление амперметра, а у второй большое сопротивление подобранного шунта. Большой ток разделится пропорционально сопротивлениям и по амперметру пройдет малый ток, по шунту – большой.

Бывают случаи, когда надо замерить ток в кабеле, на шине… изолированной шине. Шина – это медная полоса определенного сечения, по которой протекает ток, не автомобильное колесо…

Разрезать кабель или шину бывает накладно, да и бессмысленно. В этом случае можно воспользоваться измерительными клещами или трансформатором тока.

Трансформатор тока имеет две обмотки – высшую и низшую, которые не связаны между собой. Ток приходит на высшую, затем создается ЭДС (более подробно про принцип действия ТТ) и во вторичной обмотке протекает ток, пропорциональный числу витков обмоток. Так вот, если есть необходимость замерить ток, то на кабель вешают «бублик», он же – ТТ. А уже к трансформатору тока присоединяют амперметр. Тут главное правильно быть проинструктированным и не наделать дел. Получается мы снимаем ток амперметром со вторичной обмотки, преобразованный в меньшую сторону и безопасный для измерения и амперметра.

Такой же принцип используется и в измерительных клещах, только и амперметр и ТТ находятся в одном корпусе. Да и плюс ко всему первичная обмотка клещей размыкается одним нажатием кнопки на корпусе и потом замыкается.

Эти два описанных решения гораздо удобнее, чем разрезать провод и садить к амперметру. Главное следить за диапазонами измеряемых приборами и протекаемых в электрических цепях токов.

Мультиметры позволяют измерять постоянный ток до 10 Ампер. Но их часто палят, так как неправильно подключают концы на прибор, не учитывают величину тока в проводах… Но это в основном молодые люди. Часто для «починки» такой неисправности необходимо просто заменить предохранитель в приборе.

Амперметр в электрической цепи

Амперметр — измерительный прибор. Поэтому, когда мы подключаем его к электрической цепи, он не будет влиять на величину силы тока. Он будет лишь показывать ее значение.

На схемах электрических цепей амперметр обозначается специальным условным знаком — кружочком с буквой “А” (рисунок 2).

Правила подключения амперметра в электрическую цепь

  1. Амперметр необходимо включать в цепь последовательно с тем прибором/проводником, силу тока в котором нужно измерить (рисунок 3)
  1. У амперметра имеется две клеммы для подсоединения проводников. Клемму, на которой стоит знак “+” нужно соединять с проводом, идущим от положительного полюса источника тока. И, соответственно, клемму, на которой стоит знак “-” нужно соединять с проводом, идущим от отрицательного полюса источника тока (рисунок 4).
  1. Нельзя подключать амперметр к цепи, в которой нет потребителя (приемника) тока (рисунок 5). Это может привести к выходу прибора из строя.

Сила тока. Амперметр

В процессе своего движения вдоль проводника заряженные частицы (в металлах это электроны) переносят некоторый заряд. Чем больше заряженных частиц, чем быстрее они движутся, тем больший заряд будет ими перенесён за одно и то же время. Электрический заряд, проходящий через поперечное сечение проводника за 1 секунду, определяет силу тока в цепи.

Сила тока (I) — скалярная величина, равная отношению заряда (q), прошедшего через поперечное сечение проводника, к промежутку времени (t), в течение которого шёл ток.
I = q t , где (I) — сила тока, (q) — заряд, (t) — время.
Единица измерения силы тока в системе СИ — ([I]~=~1~A) (ампер).

В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током:

при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях — отталкиваются.

За единицу силы тока (1~A) принимают силу тока, при которой два параллельных проводника длиной (1) м, расположенные на расстоянии (1) м друг от друга в вакууме, взаимодействуют с силой (0,0000002) H (рис. 1 .).

Definition_Ampere.png

Рис. 1 . Определение единицы силы тока
Единица силы тока называется ампером ((A)) в честь французского учёного А.-М. Ампера (рис. 2 ).

Ampere_Andre_1825.png

Андре-Мари Ампер
(1775 — 1836)
Рис. 2 . Ампер Андре-Мари

А.-М. Ампер ввёл термины: электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток.

Ампер — довольно большая сила тока. Например, в электрической сети квартиры через включённую (100) Вт лампочку накаливания проходит ток с силой, приблизительно равной (0,5A). Ток в электрическом обогревателе может достигать (10A), а для работы карманного микрокалькулятора достаточно (0,001A).

Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например, миллиампер (мА) и микроампер (мкА):
(1 мA = 0,001 A) , (1 мкA = 0,000001 A) , (1 кA =1000 A).
То есть (1 A = 1000 мA) , (1 A = 1000000 мкA) , (1 A = 0,001 кA).

Если электроны перемещаются в одном направлении, т.е. — от одного полюса источника тока к другому, то такой ток называют постоянным .

Переменным называется ток, сила и направление которого периодически изменяются.

В бытовых электросетях используют переменный ток напряжением (220) В и частотой (50) Гц. Это означает, что ток за (1) секунду (50) раз движется в одном направлении и (50) раз — в другом. У многих приборов имеется блок питания, который преобразует переменный ток в постоянный (у телевизора, компьютера и т.д.).

Как включают в электрическую цепь амперметр?

Найдите правильный ответ на вопрос ✅ «Как включают в электрическую цепь амперметр? . » по предмету Физика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.

Похожие вопросы по физике

1) Для измерения силы тока в лампе и напряжения на ней в цепь включают амперметр и вольтметр. Какой из этих приборов должен быть включен параллельно лампе: а: только амперметр б: амперметр и вольтметр с: только вольтметр г: ни амперметр ни вольтметр

Для измерения силы тока проходящего через электрическую лампу и напряжение на ней включают 1) амперметр и вольтметр параллельно лампе 2) амперметр и вольтметр последовательно с лампой 3) амперметр последовательно с лампой вольтметр параллельно лампе

1. Сила тока-это . 2. Единицы силы тока: . 3. Амперметр-это . 4. амперметр включают в цепь . 5. Обозначение амперметра в цепь .

10) Для измерения силы тока в лампе и напрежения на ней в электрическую цепь включают амперметр и зольтметр.

Амперметр в электрическую цепь включается 1) Последовательно с учётом полярности источника 2) Последовательно без учётом полярности источника Вольтметр в электрическую цепь включается 1) Параллельно с учётом полярности источника 2) Параллельно без

Помогите с ответом
решить уравнение 2 целых 2.9:y=3 целых 19.27:3 целых 1.3
Нет ответа

дачнику до железной платформы нужно пройти 2 км. с какой средней скоростью нужно идти. чтобы успеть на электр-ку которая прибудет на платформу через полчаса? запиши ответ с помощью знака > или равно, обозначив средн. скорость буквой U

Измерение силы тока амперметром и его схема включения

Если через проводник течет ток, то он описывается такой величиной, как «сила тока». Сила тока в физическом понимании это количество электронов, проходящие через поперечное сечение проводника за единицу времени. Прибором для измерения этой электрической величины является амперметр или мультиметр в режиме амперметра.

Единицей измерения силы тока считается «Ампер», он получил такое название в честь известного физика Андре Ампера. Сила тока в проводнике равная один ампер эквивалентна проходящему заряд в один кулон за единицу времени. Или все свободные электроны прошедшие за одну секунду через поперечное сечение проводника в сумме эквивалентны заряду в один Кулон . Так как заряд одного электрона равен 1.6×10 -19 , то можно легко вычислить, сколько свободных электронов в одном Кулоне.

Амперметр – это измерительное устройство предназначенное для измерения силы тока в цепи с протекающим током . Любой из них предназначен для измерения токов фиксированной величины.

Кроме амперметра, бывают измерительные приборы заточенные под измерение токовой силы меньших номиналов, их называю миллиамперметрами и микроамперметрами. Так же, как и вольтметры, современные амперметры бывают цифровыми и стрелочными.

На принципиальных схемах амперметры обозначаются кружком и буквой внутри: А, мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением прибора указывается его порядковый номер в схеме и буквенное обозначение «PА». Например. Если таких приборов в схеме будет два или более, то около первого пишут «PА1», а у второго «PА2» и т.п.

Схема включения амперметра

Для измерения силы тока амперметр включается непосредственно в схему последовательно с нагрузкой, то есть в разрыв цепи. Таким образом, на весь период времени измерения амперметр является еще одним элементом схемы, через который следует ток, но при этом, в работе схемы это измерительное устройство никакого влияния не оказывает. На рисунке ниже показана схема включения миллиамперметра в питающую цепь лампы накаливания.

Не забывайте, что амперметры бывают на разные диапазоны измерений, и если при измерении выбрать меньший диапазон по отношению к измеряемой величине, то амперметр может и перегореть. Допустим, у миллиамперметра диапазон измерений 0-300 мА, значит, это электрическую величину следует измерять только в этих пределах, так как при измерении значений свыше 300 мА прибор выйдет из строя.

Главное всегда помнить, что Амперметр включается в схему последовательно и всегда в разрыв цепи. Если требуется измерить силу больше максимального измеряемого уровня, то необходимо использовать схему включения амперметра через шунт или токовый трансформатор.

Измерение силы тока с помощью амперметра

Измерение силы тока мультиметром видео руководство

Упрощенная схема для измерения силы тока выглядит вот так:

Из схемы хорошо видно, что это измерительное устройство мы должны подсоединять последовательно нагрузке, в разрыв цепи. Итак перейдем к практике, в первом примере нам требуется измерить силу постоянного тока до 200 мА, поэтому нужно поставить щупы такого мультиметра в определенные клеммы и переключить его в нужный диапазон

измерение постоянного тока мультиметром

Для измерения силу тока (постоянного или переменного) в диапазоне до 20 Ампер, необходимо не только переставить щуп в другую клемму мультиметра, но и переключатель переводится на диапазон «10А»

Измерение тока больших номиналов

И еще совет. Возьмите за правило при измерение силы тока: когда закончите работать на пределе «10А» сразу же переставляйте плюсовой (красного цвета) щуп на свое основное место. Этим вы сбережете нервы себе и сохраните в рабочем состоянии щупы или мультиметр.

Никогда не подключайте этот прибор в розетку без нагрузки! Тем самым вы просто угробите его. Как уже сказано, амперметр обладает очень малым входным сопротивлением.
При измерении силы тока будьте осторожны и не касайтесь оголенных проводов и открытых частей измерительных щупов. Это защитит от электрического удара током.

Ну вот, в принципе и все, что хотел сказать об теории и практики измерения тока мультиметром. Главное всегда помните, что при измерении напряжения вольтметр следует подключать параллельно нагрузке или источнику питания, а при измерении силы тока прибор включается в разрыв электрической цепи и через него идет ток.

Виды амперметров

Аналоговые или стрелочные амперметры (смотри рисунок ниже). Они обладают магнитоэлектрической системой, состоящей из катушки с тонкой проволокой, которая перемещается между полюсами постоянного магнита. Как только через катушку потечет ток, она переместиться под действием вращающего момента, величина которого пропорциональна протекающему току. Повороту катушки оказывает сопротивление специальная пружина с упругим моментом пропорциональным углу закручивания. При равновесии эти моменты равны, а стрелка покажет значение, пропорциональное идущему через нее току. Для увеличения пределов измерения, параллельно амперметру подключают шунтирующий резистор заданной величины, рассчитанной заранее по определенным формулам.

Любой амперметр при измерениях должен быть включен в разрыв цепи, поэтому его внутреннее сопротивление протекающему току минимально. Поэтому, сопротивление между его измерительными щупами должно быть очень низким. Иначе, для схемы амперметр будет аналогичен сопротивлению. А чем оно выше, тем меньший ток через него следует. Но не стоит заморачиваться, ведь любая измерительная техника разрабатывается с учетом этих и некоторых других особенностей.

Плюсами аналоговых амперметров: им не требуется отдельное питание для выдачи показаний, так как они используют ток замеряемой цепи, они достаточно удобны при выводе информации. На многих моделях присутствует подстроечный винт корректировки для повышения точности измерения. Но без недостатков тоже не обходится, во первых большая инертность, то есть для отклонения стрелки требуется какое-то время. Хоть он почти и незаметен, но он все-таки имеет место быть.

Цифровые амперметры состоят из аналого-цифрового преобразователя (АЦП) и преобразует протекающий ток в цифровые коды, который потом выводяться на ЖК-экране.

Цифровые амперметры лишены инертности свойственной аналоговым приборам, и выдача результатов зависит только от частоты процессора. В дорогих цифровых приборах он может выдать до 1000 и выше результатов измерений в секунду. Кроме того цифровые приборы изготавливаются меньших размеров, что очень критично в современной технике. Минусы тоже конечно присутствуют – им необходим автономный источник питания, обычно это батарейка.

Амперметры различают для измерения постоянного и переменного тока. Если у вас вдруг нет прибора, для фиксации результатов переменного тока можно использовать схему стандартного выпрямителя и типовой измеритель постоянного тока, а еще лучше приобрести мультиметр.

Схема самодельного амперметра на Arduino

Как и любой измерительный прибор, амперметр можно сделать свои руками, не веришь смотри это прикольное видео, которое поможет вам измерить силу тока, если вы окажитесь попаданцем в глубоком прошлом или отсталом параллельном мире.

Радиолюбители Ардуинщики могут собрать более точную в измерительном плане схему и на типовой плате Arduino:

Предлагаю для повторения простенький проект амперметра, который способен измерять неизвестное текущее значение постоянного тока. При этом его величина отображается на LCD-дисплее 16×2.

Для самоделки была использована плата Arduino pro mini. Концепция работы схемы, состоит в применении АЦП для считывания напряжение, которое в последствии делится на значение сопротивления резистора, через который протекает ток, чтобы получить искомую величину. Резистор в данном случае представляет собой обычный шунт, т.к включен в схему так, чтобы через него протекал ток в схеме, а измерительными выводами он подключается параллельно плате Ардуино для считывания напряжения. На каждом терминале, подсоединенном к определенной линии АЦП,имеется напряжение в интервале от 0 до 5 В, и разность напряжений этих двух терминалов и будет пропорциональна токовому значению, идущему через шунт. Схема подключения шунта показана на рисунке ниже.

В соответствии с законом Ома ток вычислить очень просто:

I = (V2 – V1) / R

В данном самодельном амперметре надо правильно выбрать сопротивления шунта Амперметра. Оно должно быть таким, чтобы не оказывать сильного влияния на работу нагрузки. Использование высокого номинала сопротивления приведет к тому, что падение напряжения на резисторе будет слишком высоким, что не обеспечит нагрузку достаточным токовым уровнем. Использование же слишком малого значения сопротивления не позволит АЦП правильно считать. Для выбора шунта можно использовать упрощенное правило: R > Vр / I. Где Vр пнапряжение разрешения АЦП, то есть минимальное напряжение, которое способен различить аналогово-цифровой преобразователь. В нашем случае оно составляет 4.88 мВ. Тогда, например, если минимальное значение для измерения составляет 0.5 мА, то получим: R > 4.88 мВ / 0.5 мА > 9.76. Поэтому шунт амперметра на ардуино будет сопротивлением 10 Ом.

Схема такого измерительного устройства на Arduino показана ниже.

Код программы (скетч) можно посмотреть тут:

Измерение силы тока амперметром и его схема включения

Если через проводник течет ток, то он описывается такой величиной, как «сила тока». Сила тока в физическом понимании это количество электронов, проходящие через поперечное сечение проводника за единицу времени. Прибором для измерения этой электрической величины является амперметр или мультиметр в режиме амперметра.

Единицей измерения силы тока считается «Ампер», он получил такое название в честь известного физика Андре Ампера. Сила тока в проводнике равная один ампер эквивалентна проходящему заряд в один кулон за единицу времени. Или все свободные электроны прошедшие за одну секунду через поперечное сечение проводника в сумме эквивалентны заряду в один Кулон . Так как заряд одного электрона равен 1.6×10 -19 , то можно легко вычислить, сколько свободных электронов в одном Кулоне.

Амперметр – это измерительное устройство предназначенное для измерения силы тока в цепи с протекающим током . Любой из них предназначен для измерения токов фиксированной величины.

Кроме амперметра, бывают измерительные приборы заточенные под измерение токовой силы меньших номиналов, их называю миллиамперметрами и микроамперметрами. Так же, как и вольтметры, современные амперметры бывают цифровыми и стрелочными.

На принципиальных схемах амперметры обозначаются кружком и буквой внутри: А, мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением прибора указывается его порядковый номер в схеме и буквенное обозначение «PА». Например. Если таких приборов в схеме будет два или более, то около первого пишут «PА1», а у второго «PА2» и т.п.

Схема включения амперметра

Для измерения силы тока амперметр включается непосредственно в схему последовательно с нагрузкой, то есть в разрыв цепи. Таким образом, на весь период времени измерения амперметр является еще одним элементом схемы, через который следует ток, но при этом, в работе схемы это измерительное устройство никакого влияния не оказывает. На рисунке ниже показана схема включения миллиамперметра в питающую цепь лампы накаливания.

Не забывайте, что амперметры бывают на разные диапазоны измерений, и если при измерении выбрать меньший диапазон по отношению к измеряемой величине, то амперметр может и перегореть. Допустим, у миллиамперметра диапазон измерений 0-300 мА, значит, это электрическую величину следует измерять только в этих пределах, так как при измерении значений свыше 300 мА прибор выйдет из строя.

Главное всегда помнить, что Амперметр включается в схему последовательно и всегда в разрыв цепи. Если требуется измерить силу больше максимального измеряемого уровня, то необходимо использовать схему включения амперметра через шунт или токовый трансформатор.

Измерение силы тока с помощью амперметра

Измерение силы тока мультиметром видео руководство

Упрощенная схема для измерения силы тока выглядит вот так:

Из схемы хорошо видно, что это измерительное устройство мы должны подсоединять последовательно нагрузке, в разрыв цепи. Итак перейдем к практике, в первом примере нам требуется измерить силу постоянного тока до 200 мА, поэтому нужно поставить щупы такого мультиметра в определенные клеммы и переключить его в нужный диапазон

измерение постоянного тока мультиметром

Для измерения силу тока (постоянного или переменного) в диапазоне до 20 Ампер, необходимо не только переставить щуп в другую клемму мультиметра, но и переключатель переводится на диапазон «10А»

Измерение тока больших номиналов

И еще совет. Возьмите за правило при измерение силы тока: когда закончите работать на пределе «10А» сразу же переставляйте плюсовой (красного цвета) щуп на свое основное место. Этим вы сбережете нервы себе и сохраните в рабочем состоянии щупы или мультиметр.

Никогда не подключайте этот прибор в розетку без нагрузки! Тем самым вы просто угробите его. Как уже сказано, амперметр обладает очень малым входным сопротивлением.
При измерении силы тока будьте осторожны и не касайтесь оголенных проводов и открытых частей измерительных щупов. Это защитит от электрического удара током.

Ну вот, в принципе и все, что хотел сказать об теории и практики измерения тока мультиметром. Главное всегда помните, что при измерении напряжения вольтметр следует подключать параллельно нагрузке или источнику питания, а при измерении силы тока прибор включается в разрыв электрической цепи и через него идет ток.

Виды амперметров

Аналоговые или стрелочные амперметры (смотри рисунок ниже). Они обладают магнитоэлектрической системой, состоящей из катушки с тонкой проволокой, которая перемещается между полюсами постоянного магнита. Как только через катушку потечет ток, она переместиться под действием вращающего момента, величина которого пропорциональна протекающему току. Повороту катушки оказывает сопротивление специальная пружина с упругим моментом пропорциональным углу закручивания. При равновесии эти моменты равны, а стрелка покажет значение, пропорциональное идущему через нее току. Для увеличения пределов измерения, параллельно амперметру подключают шунтирующий резистор заданной величины, рассчитанной заранее по определенным формулам.

Любой амперметр при измерениях должен быть включен в разрыв цепи, поэтому его внутреннее сопротивление протекающему току минимально. Поэтому, сопротивление между его измерительными щупами должно быть очень низким. Иначе, для схемы амперметр будет аналогичен сопротивлению. А чем оно выше, тем меньший ток через него следует. Но не стоит заморачиваться, ведь любая измерительная техника разрабатывается с учетом этих и некоторых других особенностей.

Плюсами аналоговых амперметров: им не требуется отдельное питание для выдачи показаний, так как они используют ток замеряемой цепи, они достаточно удобны при выводе информации. На многих моделях присутствует подстроечный винт корректировки для повышения точности измерения. Но без недостатков тоже не обходится, во первых большая инертность, то есть для отклонения стрелки требуется какое-то время. Хоть он почти и незаметен, но он все-таки имеет место быть.

Цифровые амперметры состоят из аналого-цифрового преобразователя (АЦП) и преобразует протекающий ток в цифровые коды, который потом выводяться на ЖК-экране.

Цифровые амперметры лишены инертности свойственной аналоговым приборам, и выдача результатов зависит только от частоты процессора. В дорогих цифровых приборах он может выдать до 1000 и выше результатов измерений в секунду. Кроме того цифровые приборы изготавливаются меньших размеров, что очень критично в современной технике. Минусы тоже конечно присутствуют – им необходим автономный источник питания, обычно это батарейка.

Амперметры различают для измерения постоянного и переменного тока. Если у вас вдруг нет прибора, для фиксации результатов переменного тока можно использовать схему стандартного выпрямителя и типовой измеритель постоянного тока, а еще лучше приобрести мультиметр.

Схема самодельного амперметра на Arduino

Как и любой измерительный прибор, амперметр можно сделать свои руками, не веришь смотри это прикольное видео, которое поможет вам измерить силу тока, если вы окажитесь попаданцем в глубоком прошлом или отсталом параллельном мире.

Радиолюбители Ардуинщики могут собрать более точную в измерительном плане схему и на типовой плате Arduino:

Предлагаю для повторения простенький проект амперметра, который способен измерять неизвестное текущее значение постоянного тока. При этом его величина отображается на LCD-дисплее 16×2.

Для самоделки была использована плата Arduino pro mini. Концепция работы схемы, состоит в применении АЦП для считывания напряжение, которое в последствии делится на значение сопротивления резистора, через который протекает ток, чтобы получить искомую величину. Резистор в данном случае представляет собой обычный шунт, т.к включен в схему так, чтобы через него протекал ток в схеме, а измерительными выводами он подключается параллельно плате Ардуино для считывания напряжения. На каждом терминале, подсоединенном к определенной линии АЦП,имеется напряжение в интервале от 0 до 5 В, и разность напряжений этих двух терминалов и будет пропорциональна токовому значению, идущему через шунт. Схема подключения шунта показана на рисунке ниже.

В соответствии с законом Ома ток вычислить очень просто:

I = (V2 – V1) / R

В данном самодельном амперметре надо правильно выбрать сопротивления шунта Амперметра. Оно должно быть таким, чтобы не оказывать сильного влияния на работу нагрузки. Использование высокого номинала сопротивления приведет к тому, что падение напряжения на резисторе будет слишком высоким, что не обеспечит нагрузку достаточным токовым уровнем. Использование же слишком малого значения сопротивления не позволит АЦП правильно считать. Для выбора шунта можно использовать упрощенное правило: R > Vр / I. Где Vр пнапряжение разрешения АЦП, то есть минимальное напряжение, которое способен различить аналогово-цифровой преобразователь. В нашем случае оно составляет 4.88 мВ. Тогда, например, если минимальное значение для измерения составляет 0.5 мА, то получим: R > 4.88 мВ / 0.5 мА > 9.76. Поэтому шунт амперметра на ардуино будет сопротивлением 10 Ом.

Схема такого измерительного устройства на Arduino показана ниже.

Код программы (скетч) можно посмотреть тут:

Оцените статью
TutShema
Добавить комментарий