Какие вещества не проводят электрический ток

Чтобы разобраться в таком явлении как электропроводность вещества, сначала нужно понять, что такое электрический ток, так как эти два явления неразрывно связаны друг с другом. Электрический ток представляет собой упорядоченное движение заряженных частиц, которое может происходить под воздействием электрического поля.

Главная особенность электрического тока – его широкое применение в энергетике. Это – единственный вид энергии, который можно свободно передавать на большие расстояние без какой-либо дополнительной переработки.

Рассматривая передачу энергии, нужно затронуть тему проводников, по которым передаётся ток. Заряженными частицами могут быть электроны, ионы в электролитах и газах, в полупроводниках такими частицами становятся электроны и дырки. Данная особенность напрямую зависит от структуры вещества или тела. При этом каждое тело обладает собственной электрической проводимостью.

Что такое электрическая проводимость?

Простыми словами электрическая проводимость или электропроводность – это способность или свойство вещества или тела проводить электрический ток, который создаётся под действием электрического поля.

Это физическая величина, которую можно измерить, на основе которой даётся характеристика того или иного проводника. Чем выше эта характеристика, тем лучше тело проводит ток.

Как уже было сказано, проводниками электрического тока выступают свободные заряженные частицы, а значит, электропроводность зависит от количества таких свободных частиц. Чем большей будет концентрация свободных заряженных частиц, тем лучше вещество или тело будет проводить электрический ток.

Основные группы проводников

Так как разные тела располагают разным количеством свободных частиц, электропроводимость у всех отличается. По этому показателю тела можно разделить на три основные группы.

К первой группе относятся проводники, у них самая высокая проводимость. Такие тела лучше всего способны проводить электрический ток. Однако проводники также могут быть двух видов, отличие заключается в особенностях протекания тока.

1. Первый вид проводников – металлы. У них электронная проводимость, так как ток протекает за счёт большого количества свободных электронов;

2. Второй вид проводников с высокой электропроводимостью – различные кислоты, щелочные растворы и соли. Другое их название – электролиты. В них свободными заряженными частицами являются ионы. Отсюда и название – ионная проводимость.

Стоит отметить, что существуют вещества смешанного типа, то есть, заряженными частицами в них могут быть как электроны, так и ионы. Это могут быть некоторые газы.

Высокая электропроводность металлов легко объяснима при рассмотрении их структуры. В атомах металлов валентные электроны могут легко перемещаться от одного атома к другому, так как они слабо связаны с ядром. Таким образом, образуется электрический ток.

Испытание веществ на электрическую проводимость

Электропроводимость тела напрямую зависит от сопротивления вещества, а её величина будет обратнопропорциональна показателю сопротивления.

Электрическое сопротивление – это свойство любого проводника; величина сопротивления равна отношению напряжения к силе протекающего тока. Можно сказать, что чем выше напряжение подаваемого тока, тем выше скорость протекания тока, однако сопротивление проводника снижает этот показатель.

Следует добавить, что электрического поле, порождающее упорядоченное движение частиц, а, следовательно, и электрический ток, распространяется в пространстве со скоростью света. То есть, электрический ток протекает всегда со скоростью 300 тысяч километров в секунду.

В чём же тогда особенность скорости движения? Дело в том, что скорость протекания тока равна скорости света, однако отдельные электроны могут двигаться с разной скоростью – от нескольких миллиметров до нескольких сантиметров в секунду. Это, разумеется, не очень большая скорость.

Почему же, существует подобная разница и как объяснить скорость распространения тока? Напряжение тока как раз определяет скорость движения отдельных электронов – несколько миллиметров или сантиметров в секунду.

Дело в том, что каждый отдельный электрон движется в одном огромном потоке электронов, которые полностью заполняют проводник. И каждый электрон постоянно взаимодействует с другими электронами. Так происходит во время прохождения электрического тока.

Поэтому отдельный электрон движется крайне медленно, однако, скорость распространения энергии в электрическом проводнике будет очень высока. Соответственно, чем больше будет количество свободных частиц, тем лучше будет их взаимодействие, а значит, выше будет скорость распространения тока и скорость передачи электрической энергии.

Электрический ток. В веществе, помещенном в электрическое поле, под действием сил поля возникает процесс движения элементарных носителей электричества — электронов или ионов. Движение этих электрически заряженных частиц материи называют электрическим током.
За единицу силы тока принят ампер (А). Это такой ток, при котором через поперечное сечение проводника каждую секунду проходит количество электричества, равное 1 Кл. Силу тока иногда измеряют тысячными долями ампера — миллиамперами (мА) или миллионными долями ампера — микроамперами (мкА), а при больших значениях- тысячами ампер — килоамперами (кА), в формулах ток обозначают буквой I (i).
В электротехнике широко применяют как постоянный, так и переменный ток. Постоянным называют ток, значение и направление которого в любой момент времени остаются неизменными (рис. 9, а).
Токи, значение и направление которых не остаются постоянными, называют изменяющимися, или переменными. Чаще всего в электротехнических устройствах используют ток, изменяющийся по синусоидальному закону, который получают от генераторов переменного тока и трансформаторов (рис. 9, б). От выпрямителей получают пульсирующий ток (рис. 9, в), неизменный по направлению, но меняющийся по величине.

Электропроводность. Свойство вещества проводить электрический ток под действием электрического поля называют электропроводностью. Электропроводность различных веществ зависит от концентрации свободных (т. е. не связанных с атомами, молекулами или кристаллической структурой) электрически заряженных частиц. Чем больше концентрация этих частиц, тем больше электропроводность данного вещества. Все вещества в зависимости от электропроводности делят на три группы: проводники, диэлектрики (изолирующие материалы) и полупроводники.
Проводники обладают очень высокой электропроводностью. Существуют два рода проводников, которые различаются физической природой протекания электрического тока. К проводникам первого рода относятся металлы. Прохождение по ним тока обусловлено движением свободных электронов, вследствие чего их называют проводниками с электронной проводимостью. Проводниками второго рода являются растворы кислот, щелочей и солей (в основном водные), называемые электролитами. Прохождение тока через электролиты связано с движением электрически заряженных частей молекул — положительных и отрицательных ионов, т. е. электролиты являются проводниками с ионной проводимостью.
Имеются также вещества со смешанной проводимостью, в которых ток переносится электронами и ионами. К ним относятся, например, газы и пары в ионизированном состоянии.
Физическая природа электропроводности металлов. Высокая электропроводность металлов хорошо объясняется на основе электронной теории. Согласно этой теории валентные электроны сравнительно слабо связаны с их ядрами. Поэтому они свободно перемещаются между атомами, переходя из сферы действия одного атома в сферу действия другого и заполняя пространство между ними наподобие газа. Эти электроны принято называть свободными.
Свободные электроны / находятся в состоянии беспорядочного движения (рис. 10, а). Однако если внести металлический проводник в электрическое поле, то свободные электроны под действием сил поля начнут перемещаться в сторону положительного полюса (рис. 10, б), создавая электрический ток. Таким образом, электрическим током в металлических проводниках называется упорядоченное (направленное) движение свободных электронов.

Металлоиды имеют на внешней оболочке большое количество электронов и они прочно удерживаются около своих ядер. Поэтому металлоиды, как правило, являются диэлектриками.
Скорость прохождения тока. Электрическое поле распространяется в пространстве с огромной скоростью — 300 000 км/с, т. е. со скоростью света. С такой же скоростью проходит и электрический ток в проводнике. Однако каждый отдельный электрон движется в среднем по проводнику со скоростью несколько миллиметров или сантиметров в секунду (эта скорость зависит от напряженности электрического поля).
Чем же объяснить такую скорость распространения электрического тока? Причина в том, что каждый электрон находится в общем электронном потоке, заполняющем проводник, и при прохождении электрического тока испытывает непрерывное воздействие со стороны соседних электронов. Поэтому, хотя сам электрон движется медленно, скорость передачи движения от одного электрона к другому (скорость распространения электрической энергии) будет огромна. Например, при включении рубильника на электростанции практически мгновенно появляется ток в каждом участке электрической цепи целого города, несмотря на незначительную скорость движения электронов.

Способность вещества проводить электрический ток называется электропроводностью.

По электропроводности все вещества делятся на проводники, диэлектрики и полупроводники.

Проводники обладают высокой электропроводностью . Различают проводники первого и второго рода. К проводникам первого рода относятся все металлы, некоторые сплавы и уголь. Они обладают электронной проводимостью. К проводникам второго рода относятся электролиты. В них имеет место ионная проводимость.

В проводниках отсутствует электростатическое поле (рис.1.10б).

Если проводник поместить в электростатическое поле, то под действием этого поля происходит перемещение зарядов в проводнике: положительных – в направлении внешнего поля, отрицательных – в противоположном направлении (рис.1.10а). Такое разделение зарядов в проводнике под действием внешнего поля называется электростатической индукцией . Разделённые внутри проводника заряды создают своё электрическое поле, направленное от положительных зарядов к отрицательным, т.е. против внешнего поля (рис.1. 10а).

Очевидно, разделение зарядов в проводнике прекратится тогда, когда напряжённость поля разделённых зарядов E

внутр станет равной напряжённости внешнего поля в проводнике Eвнешн, т.е. Eвнутр = Eвнешн, а результирующее поле

Е = Eвнутр – Eвнешн = 0

Таким образом, результирующее поле внутри проводника станет равным нулю

(рис.1. 10б). На этом принципе работает электростатический экран, защищающий часть пространства от внешних электрических полей (рис.1. 11). Для того чтобы внешние электрические поля не влияли на точность электроизмерения, измерительный прибор помещают внутрь замкнутой проводящей оболочки (экран), в которой электростатическое поле отсутствует.

4. Электропроводность. Диэлектрики в электрическом поле

Электропроводность диэлектриков практически равна нулю в силу весьма сильной связи между электронами и ядром атомов диэлектрика .

Если диэлектрик поместить в электростатическое поле, то в нём произойдёт поляризация атомов, т.е. смещение разноимённых зарядов в самом атоме, но не разделение их (рис. 1.12а). Поляризованный атом может рассматриваться как электрический диполь (рис. 1.12б), в котором «центры тяжести» положительных и отрицательных зарядов смещаются.

Диполь – это система двух разноимённых зарядов, расположенных на малом расстоянии друг от друга в замкнутом пространстве атома или молекулы.

Электрический диполь – это атом диэлектрика, в котором орбита электрона вытягивается в направлении, противоположном направлению внешнего поля Eвнешн (рис. 1.12б). Поляризованные атомы создают своё электрическое поле, напряжённость которого направлена против внешнего поля. В результате поляризации результирующее поле внутри диэлектрика ослабляется. Интенсивность поляризации диэлектрика зависит от его диэлектрической проницаемости. Чем она больше, тем интенсивнее поляризация в диэлектрике и тем слабее электрическое поле в нём.

Е = Eвнешн – Eвнутр

Если диэлектрик поместить в сильное электрическое поле, напряжённость которого можно увеличивать, то при каком-то значении напряжённости произойдёт пробой диэлектрика, при этом электроны отрываются от атома, т.е. происходит ионизация диэлектрика, и он становится проводником. Напряжённость внешнего поля, при которой происходит пробой диэлектрика, называется пробивной напряжённостью диэлектрика. А напряжение, при котором происходит пробой диэлектрика, называют напряжением пробоя, или электрической прочностью диэлектрика .

Вещества, водные растворы которых проводят электрический ток, называются электролитами. В отличие от металлов, имеющих электронную проводимость и полупроводников, имеющих электронно-дырочную проводимость, электролиты обладают ионной проводимостью.

Иногда электролитами называют и сами проводящие растворы, хотя более правильное выражение – раствор электролита.

Молекулы воды в незначительной степени распадаются на ионы:

Концентрация ионов водорода определяет кислотность раствора, а концентрация ионов гидроксила характеризует щелочность раствора. В чистой воде концентрации ионов Н + и ОН — равны. Чистая вода диссоциирует очень слабо. В 1 моль воды при 22º С распадается на ионы всего моль .

Однако получить такую воду очень трудно, т.к. в воздухе всегда присутствует углекислый газ, который, растворяясь воде, увеличивает концентрацию водородных ионов. Так как вода имеет большую диэлектрическую проницаемость () и молекулы воды обладают значительным дипольным моментом (Кл∙м ), то вокруг молекул воды на межатомных расстояниях (нм ) существует довольно сильное электрическое поле. Последнее является непосредственной причиной, ослабляющей силу электростатического притяжения ионов в молекулах растворенного вещества. Поэтому в процессе растворения соли или щелочи за счет тепловых соударений происходит распад молекул на анионы и катионы. Если молекулы растворенного вещества в воде не диссоциируют на ионы, то раствор не является проводником. Например, водные растворы сахаров, глицерина – изоляторы.

Результатом диссоциации является образование сольватов (гидратов), когда молекулы воды «обволакивают» ионы, образуя вокруг них сольватную оболочку (рисунок 1).

Рисунок 1 Сольватные оболочки: а – катиона; б – аниона

Для возникновения электрического тока в электролите, необходимо в ванну с раствором электролита опустить электроды из проводящего материала (металл, уголь и т.п.), к которым подключить источник тока (рисунок 2). Такое устройство называется гальванической или электролитической ванной.

Рисунок 2 Электролитическая ванна: 1 — ванна с раствором

медного купороса; 2 — катод; 3 – источник тока; 4 – анод;

И — скорости положительных и отрицательных ионов

На ион в электролите действуют две силы: сила со стороны электрического поля и сила сопротивления движению со стороны среды . Сила, действующая со стороны электрического поля, вычисляется по формуле:

где — заряд иона, Кл ; — напряженность электрического поля, .

Сила , обусловленная взаимодействием молекул, окружающих ион, пропорциональна скорости :

где — коэффициент сопротивления движению ионов в среде.

При движении иона в электролите между силами быстро устанавливается равновесие и движение иона между электродами можно рассматривать как равномерное и прямолинейное, поэтому:

Если обозначить , то . Коэффициент b называется подвижностью ионов. Физический смысл подвижности в том, что она характеризует скорость ионов в электролите при напряженности электрического поля Е = 1 .

Так как ток в электролитах представляет собой упорядоченное движение ионов обоих знаков, обусловленное действием внешнего электрического поля, то плотность тока в электролите определяется выражением:

где n + и — — концентрации катионов и анионов; + и — — — скорости их дрейфа, + и — — их заряды.

Происходящие на катоде и на аноде окислительно-восстанови-тельные реакции подчиняются законам Фарадея.

Первый закон : масса выделившегося на электроде вещества пропорциональна протекшему через электролит заряду:

где — электрохимический эквивалент; I – сила тока, А ; t — время, с .

Электрохимические эквиваленты ряда элементов приведены в таблице 1.

Таблица 1 Значения электрохимических эквивалентов

для некоторых веществ

Второй закон : электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам:

где F — число Фарадея (F= 96500 ); M – молярная масса выделившегося на электроде вещества; n – его валентность, — химический эквивалент.

Продукты электровосстановления или электроокисления ионов электролита могут вступить в химические реакции с раствором вблизи электрода. Такие процессы называются вторичными реакциями.

  1. Значение сна у разных народов
  2. Как сварить вкусный грибной суп с опятами
  3. Рецепт приготовления заливного говяжьего языка
  4. Как приготовить пирожки лук с яйцом

Проводники и непроводники электричества

электроскоп.png

1. Поднесём палочку, имеющую положительный заряд. Лепестки разойдутся сильнее, так как часть положительного заряда перейдёт на электроскоп.

электроскоп_3.png

Рис. (2). Воздействие положительно заряженной палочки

2. Поднесём палочку, имеющую отрицательный заряд. Лепестки сблизятся, так как часть положительного заряда нейтрализуется электронами, перешедшими с отрицательно заряженной палочки.

электроскоп_6.png

Рис. (3). Воздействие отрицательно заряженной палочки

По изменившемуся углу отклонения лепестков электроскопа мы можем определить знак заряда поднесённого тела.

Количество заряда, переданное электроскопом, можно определить по изменению положения металлизированных листочков. Чем больше заряда перешло на электроскоп, тем сильнее листочки отклонятся от первоначального положения. Если листочки висят свободно, то заряда на электроскопе нет.

Электрометр — это электроскоп, в котором нанесена шкала для определения количества изменившегося заряда. На его металлическом стержне прикреплена лёгкая металлическая пластина, которая отклоняется при появлении заряда. Чем больший заряд сообщаем электрометру, тем больший угол отклонения стрелки указателя получается.

Рис. (4). Передача заряда на электрометр

Вещества и материалы (в зависимости от их способности передавать электрические заряды) можно разделить на три группы: проводники, полупроводники и диэлектрики (непроводники электричества).

Проводники — тела или материалы, через которые электрические заряды могут свободно переходить от заряженного тела к незаряженному.

Хорошие проводники электричества — это металлы, растворы солей, кислот и щелочей. Человеческое тело также является проводником. Если дотронуться пальцем до заряженного электроскопа или электрометра, то он тут же разрядится. Об этом можно судить по опустившимся листочкам. Это свидетельствует о том, что заряд через тело ушёл в землю.
Хорошими проводниками электрического тока являются металлы, например серебро, медь, алюминий, железо, золото и другие.

Тела, а также вещества и материалы, через которые электрические заряды не могут переходить с заряженного тела на незаряженное тело, называют н епроводниками электрического тока , или диэлектриками.

К веществам, не проводящим электричество, относят бумагу, стекло, фарфор, янтарь, резину, эбонит, пластмассы, сухой воздух.

Из диэлектриков производят изоляционные материалы. Их называют изоляторами .

Полупроводниками называют вещества, проводимость электрического тока которых зависит от концентрации примесей, температуры и воздействия разных видов излучения. Полупроводники занимают промежуточное положение между проводниками и диэлектриками.

К полупроводникам относятся кремний, германий, селен и др. У полупроводников способность проводить электрические заряды резко увеличивается при повышении температуры.

Обрати внимание!

При помощи электроскопа (электрометра) можно проверить, является ли данное вещество проводником электричества.

Если прикоснуться данным веществом к стержню заряженного электроскопа (держа его в руках) и его заряд станет равным нулю, то, следовательно, данное вещество является проводником. Если показание не изменится, то, следовательно, данное вещество — диэлектрик.

Необходимо учитывать, что при изменении влажности, например, сухое дерево (диэлектрик) становится влажным. Вода является проводником электричества, поэтому влажное дерево тоже становится проводником.

Электролиты и неэлектролиты

Электроли́т — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов.

Неэлектролиты — вещества, растворы или расплавы которых не проводят электрический ток. К ним относятся: кислород, водород, многие органические вещества (сахара, эфиры, бензол и др.). В молекулах этих веществ существуют ковалентные неполярные или малополярные связи.

Анион — отрицательно заряженный ион. Характеризуется величиной отрицательного заряда. Например:

  • Cl(−) — однозарядный анион
  • SO4(2−) — двухзарядный анион

Катио́н — положительно заряженный ион. Характеризуется величиной положительного электрического заряда. Например:

  • NH4(+) — однозарядный катион
  • Ca(2+) — двухзарядный катион

Пример задания из КИМ ЕГЭ:

Установите соответствие между формулой вещества и его способностью проводить электрический ток: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. сильный электролит
  2. слабый электролит
  3. неэлектролит

Задание по образцу ФИПИ:

Установите соответствие между формулой вещества и его способностью проводить электрический ток: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. сильный электролит
  2. слабый электролит
  3. неэлектролит

Проводники

Проводимость в кристалле металла

Самыми лучшими проводниками являются металлы. Происходит это потому, что ядра атомов с электронами внутренних электронных оболочек (ионы) образуют плотную регулярную пространственную структуру – кристаллическую решетку, электроны внешних оболочек оказываются «общими» для соседних ионов и могут достаточно свободно перемещаться от одного иона к другому.

Металлическая кристаллическая решетка

Электроны движутся хаотически, но если возникает электрическое поле, то электроны начинают двигаться упорядочено, а поскольку тормозящих сил нет – легко возникает электрический ток.

Примерами хороших проводников являются такие металлы, как серебро, медь, алюминий.

Хотя скорость движения электронов по проводнику невысока (миллиметры в секунду), само электрическое поле распространяется с очень большой скоростью, сравнимой со скоростью света.

Проводимость растворов

Поскольку чистая дистиллированная вода практически не содержит свободных зарядов, она не может проводить электрический ток. Однако, если в воде растворено другое вещество, (например, обычная поваренная соль), то под действием молекул воды нейтральная молекула этого вещества распадается на заряженные части (ионы). И теперь при появлении электрического поля ионы придут в упорядоченное движение, возникнет электрический ток.

Ионная проводимость растворов

Поскольку ионы в растворе значительно тяжелее электронов в металле, растворы хуже проводят электричество, по сравнению с металлами.

Проводимость газов

Газы, как правило, состоят из отдельных, хаотично движущихся и достаточно далеко отстоящих друг от друга молекул. Поэтому они не проводят электрический ток. Однако, если внешними воздействиями создавать внутри газа заряженные частицы (ионы), то газ начинает проводить электрический ток. Такими воздействиями может быть нагревание, либо создание такого большого электрического поля, что его сил оказывается достаточно для разрушения внешних электронных оболочек. Газ при этом ионизируется, и возникает разряд – тлеющий или искровой.

Тлеющий или искровой газовый разряд

Диэлектрики

Если среда содержит очень мало свободных зарядов (или не содержит их вообще), такая среда не может проводить электрический ток и является непроводником (диэлектриком, изолятором).

В отличие от кристаллов проводников, кристаллы диэлектрика имеют такую пространственную структуру, что внешние электроны не могут далеко удалиться от ионов. В результате даже при приложении достаточно большого внешнего электрического поля ток в диэлектрике не возникает. Типичными примерами непроводников является стекло или пластмассы.

Жидкости-диэлектрики – это жидкости, в которых нет растворенных примесей, а молекулы этих жидкостей сами по себе ионами не являются, например, дистиллированная вода.

Газы в нормальных условиях, как уже было сказано выше, содержат очень мало заряженных частиц, и являются хорошими изоляторами. Примером может являться обычный воздух.

Граница между проводниками и непроводниками достаточно условна. Кроме того, существуют вещества, занимающие промежуточное положение, они называются полупроводниками. В таких веществах количество свободных зарядов не так велико, как в металлах, однако, значительно больше, чем в диэлектриках. К типичным полупроводникам относится кремний.

Исследование диэлектриков

Вещества, которые не обладают электропроводностью, называются диэлектриками или непроводниками электрического тока. Молекулы такого тела нейтральные, в них количество положительных и отрицательных зарядов одинаковое. Но, несмотря на это частицы тела всё равно обладают электрическими свойствами. В общем виде связанные атомы можно рассматривать как диполь, обладающий моментом: P = q * l, где q — общий заряд всех частиц в диэлектрике, l — расстояние между центрами частиц.

Поляризация диэлектрика

При повороте диполей происходит деформирование связей, создаются индуцированные моменты. Если к непроводнику не приложено внешнее поле, то из-за беспорядочного движения они ориентированы хаотично. Поэтому их сумма равна нулю. Если же диэлектрик внести в электромагнитное поле, то возникнет поляризация. В любом элементарном объёме будет существовать дипольный момент отличный от нуля.

Существует несколько видов поляризации, вот основные из них:

Электронная поляризация

  1. Ориентационная. Приложенное поле стремится развернуть диполи вдоль своего направления. Этому мешает тепловое движение. В результате возникает преимущественная ориентация по направлению линий электромагнитной индукции. Она зависит от значения электродвижущей силы и температуры.
  2. Электронная. Другое её название — деформационная. При этом типе возникают индуцированные диполи. Тепловые колебания не оказывают влияние на поляризацию. Этот вид характерен для поликристаллической керамики, перовскита CaTiO3.
  3. Ионная. Может существовать только в плотных диэлектриках, структура которых обусловлена кристаллической решёткой. При этом происходит разделение положительных и отрицательных ионов по примеру проводников. Причём первые смещаются вдоль направления электрического поля.

Таким образом, любой материал, по сути, может проводить электрический ток. Но в диэлектриках его сила настолько мала, что им пренебрегают. При этом для его появления нужно приложить напряжение большой силы.

Электрические свойства диэлектрического материала характеризуются диэлектрической проницаемостью среды. Её физический смысл заключается в показывании во сколько раз электростатическое поле внутри непроводника меньше, чем в вакууме: E = E0 / Eв. Например, для полиэтилена E = 2,3; стекла — 10; воды — 81; воздуха — 1,00057. Что интересно, диэлектрическая проницаемость может обладать дисперсией.

Опыт с электроскопом

Простейшим прибором для обнаружения электрического заряда является электроскоп. Своё название устройство получило от греческого слова skopeo — наблюдать. Первый прибор был создан физиком Уильямом Гильбертом в 1600 году. Его принцип действия основан на способности разноимённых зарядов притягиваться, а одноимённых — отталкиваться. Простейший электроскоп состоит из металлического стержня, на конце которого закреплён проводящий электричество шар. С обратной стороны через скобу прикреплены два лепестка из тонкой бумаги. Стержень установлен в прозрачный сосуд.

Для проведения опыта понадобится выполнить следующее:

Опыт с электроскопом

  1. Диэлектрик, например, эбонитовую палочку, поднести к шару на расстояние 3−5 миллиметров от его поверхности. При этом можно будет наблюдать, как лепесточки разойдутся на определённый угол. Произойдёт это из-за того, что возникнет электрическое поле, которое разъединит по знакам носители заряда. В результате на лепестки перейдут одноимённые частицы, что и заставит их отталкиваться друг от друга. Если палочку отвести произойдёт выравнивание, заряды равномерно распределятся, и устройство придёт в первоначальное состояние.
  2. Этот опыт можно повторить с другим диэлектриком, например, стеклянной палочкой. Если её поднести к шару, то на нём будут собираться электроны, а на лепестках соберётся положительный заряд. Как только палочка будет убрана, разделение зарядов пропадёт.
  3. Теперь диэлектриком можно коснуться шара. Лепестки разойдутся на определённый угол. После того как непроводник будет убран, заряд на шаре останется. Разрядить устройство, возможно, просто коснувшись шара рукой.

Эти эксперименты показывают, что любой материал обладает электрическим зарядом. Но несмотря на это диэлектрик является изолятором, то есть не пропускает через свою структуру электрический ток. В то же время если он начинает проходить, то в этом случае говорят о пробое. Зависит параметр от величины напряжения и толщины электроизоляционного материала.

Существует разновидность электроскопа — электрометр. В нём вместо лепестков используется стрелка и проградуированная шкала. Поэтому с его помощью можно не только обнаружить заряд, но и определить его количественное значение.

Проводники

Проводимость в кристалле металла

Самыми лучшими проводниками являются металлы. Происходит это потому, что ядра атомов с электронами внутренних электронных оболочек (ионы) образуют плотную регулярную пространственную структуру – кристаллическую решетку, электроны внешних оболочек оказываются «общими» для соседних ионов и могут достаточно свободно перемещаться от одного иона к другому.

Металлическая кристаллическая решетка

Электроны движутся хаотически, но если возникает электрическое поле, то электроны начинают двигаться упорядочено, а поскольку тормозящих сил нет – легко возникает электрический ток.

Примерами хороших проводников являются такие металлы, как серебро, медь, алюминий.

Хотя скорость движения электронов по проводнику невысока (миллиметры в секунду), само электрическое поле распространяется с очень большой скоростью, сравнимой со скоростью света.

Проводимость растворов

Поскольку чистая дистиллированная вода практически не содержит свободных зарядов, она не может проводить электрический ток. Однако, если в воде растворено другое вещество, (например, обычная поваренная соль), то под действием молекул воды нейтральная молекула этого вещества распадается на заряженные части (ионы). И теперь при появлении электрического поля ионы придут в упорядоченное движение, возникнет электрический ток.

Ионная проводимость растворов

Поскольку ионы в растворе значительно тяжелее электронов в металле, растворы хуже проводят электричество, по сравнению с металлами.

Проводимость газов

Газы, как правило, состоят из отдельных, хаотично движущихся и достаточно далеко отстоящих друг от друга молекул. Поэтому они не проводят электрический ток. Однако, если внешними воздействиями создавать внутри газа заряженные частицы (ионы), то газ начинает проводить электрический ток. Такими воздействиями может быть нагревание, либо создание такого большого электрического поля, что его сил оказывается достаточно для разрушения внешних электронных оболочек. Газ при этом ионизируется, и возникает разряд – тлеющий или искровой.

Тлеющий или искровой газовый разряд

Диэлектрики

Если среда содержит очень мало свободных зарядов (или не содержит их вообще), такая среда не может проводить электрический ток и является непроводником (диэлектриком, изолятором).

В отличие от кристаллов проводников, кристаллы диэлектрика имеют такую пространственную структуру, что внешние электроны не могут далеко удалиться от ионов. В результате даже при приложении достаточно большого внешнего электрического поля ток в диэлектрике не возникает. Типичными примерами непроводников является стекло или пластмассы.

Жидкости-диэлектрики – это жидкости, в которых нет растворенных примесей, а молекулы этих жидкостей сами по себе ионами не являются, например, дистиллированная вода.

Газы в нормальных условиях, как уже было сказано выше, содержат очень мало заряженных частиц, и являются хорошими изоляторами. Примером может являться обычный воздух.

Граница между проводниками и непроводниками достаточно условна. Кроме того, существуют вещества, занимающие промежуточное положение, они называются полупроводниками. В таких веществах количество свободных зарядов не так велико, как в металлах, однако, значительно больше, чем в диэлектриках. К типичным полупроводникам относится кремний.

Оцените статью
TutShema
Добавить комментарий