Какие символы есть в двоичной системе счисления

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, десятичная двойка является основанием двоичной системы счисления, аналогично тому, как в десятичной системе основанием является число десять.

Чтобы научиться считать в двоичной системе счисления, рассмотрим, как формируются числа в привычной для нас десятичной.

В десятичной системе счисления мы располагаем десятью знаками-цифрами: от 0 до 9. Когда счет достигает числа 9, вводится новый более старший разряд – десятки. При этом разряд единиц обнуляется и счет в этом разряде опять начинается с нуля. После числа 19 разряд десятков увеличивается на 1, а разряд единиц снова обнуляется. Получается число 20. Когда десятки дойдут до 9, впереди них появится третий разряд – сотни.

Формирование каждого последующего числа в двоичной системе счисления аналогично тому, как это происходит в десятичной за исключением того, что используются всего-лишь две цифры: 0 и 1. Как только разряд достигает своего предела, то есть единицы, появляется новый разряд, а старый обнуляется.

0 1 10 11 100 101 110 111

Итак, число три в двоичной системе записывается как 11, в десятичной – как 3. Количественно это одинаковые числа. Это одно и то же число, выраженное в различных системах счисления. Если есть вероятность неоднозначной трактовки числа, к нему приписывается нижний индекс в десятичной системе счисления, обозначающий, в какой системе счисления выражено данное число:

Индекс для числа, выраженного в десятичной системе, обычно опускается.

Перевод чисел из двоичной системы счисления в десятичную

В двоичной системе счисления с увеличением значения количество разрядов растет очень быстро. Как определить, что значит двоичное число 10001001? Нам сложно понять, сколько это, мы привыкли мыслить в десятичной системе. Поэтому часто используется перевод двоичных чисел в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и так далее. Например:

5476 = 5000 + 400 + 70 + 6

Можно пойти еще дальше и разложить число, используя основание системы счисления, возводимое в показатель степени, равный разряду цифры, уменьшенному на единицу:

5476 = 5 * 10 3 + 4 * 10 2 + 7 * 10 1 + 6 * 10 0

После равенства числа 5, 4, 7 и 6 – это набор цифр из которых состоит число 5476. Все эти цифры умножаются на десять, возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы. Так, например, 6 находится в первом разряде, поэтому она умножается на 10 (1-1) . Натуральное число в нулевой степени равно единице. Таким образом, мы умножаем 6 на 1.

Точно также производится разложение числа в двоичной системы счисления, кроме того, что основанием выступает двойка, а не десятка. Здесь до знака равенства число представлено в двоичной системе счисления, после «равно» запись идет в десятичной:

10001001 = 1 * 2 7 + 0 * 2 6 + 0 * 2 5 + 0 * 2 4 + 1 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0

Результат вычислений дает десятичное число, количественно равное двоичному 10001001:

1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 =
= 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

То есть число 10001001 по основанию 2 равно числу 137 по основанию 10:

Двоичная система

Система счисления, которая в своем арсенале использует только две цифры, то есть имеющая основание два, называется двоичной или бинарной. В такой системе числа заменяются последовательностью нулей и единиц. Например, десятичное число 134 в двоичном формате выглядит как 10000110. Для того чтобы понять, как это работает, следует придерживаться правил перевода чисел из одной системы счисления в другую.

Двоичная система счисления

Перевод чисел из десятичной системы счисления в двоичную

Перевод целой части десятичного числа производится путем поочередного деления частного на основание двоичной системы, то есть на два. В остатке от деления останется либо ноль, либо единица. Эти остатки записываются, начиная с последнего частного в направлении слева направо. Это и будет двоичным представлением десятичного числа.

Для перевода десятичного числа 29 в двоичный формат:

Делят 29 на два, получают 14 и в остатке 1. Остаток следует запомнить.

Затем частное от деления, то есть число 14 снова делят на два, получено 7 и в остатке 0 (ноль).

Разделим 7 на два, получим частное 3 и остаток 1.

Три делят на два, получено в частном 1 и остаток 1.

Так как последнее частное 1 меньше основания системы счисления, то есть числа 2, то последовательное деление прекращают.

Затем записывают остатки, начиная с последнего частного, и получают последовательность чисел: 11101. Таким образом, десятичное число 29 в двоичной системе счисления равно 11101.

Еще один пример: перевод числа 37 в двоичный формат.

Получен результат: 100101.

Если десятичные числа расположить последовательно и сопоставить с их двоичными эквивалентами, то можно увидеть некоторую закономерность.

Таблица двоичной системы счисления

Как видно из таблицы, после 11 в числовом ряду двоичных чисел идет число 100. Так как в двоичной системе счисления только два знака 0 и 1 для обозначения числа, то происходит сдвиг разрядной сетки влево. После двузначного числа 11 идет трехзначное число 100.

Таблицей двоичной системы удобно пользоваться для перевода только небольших десятичных чисел. Ее даже рекомендуется запомнить, как таблицу умножения в математике. Но ни в коем случае нельзя по таблице переводить отдельные цифры числа в десятичный формат. Это приведет к ошибке. Например, десятичное число 15 это не 1 и 101, (вместе 1101), а все-таки 1111.

Числа, используемые в двоичной системе счисления

Состав двоичной системы счисления — цифры 0 и 1. Основание равно 2. В крайней правой позиции числа указывается количество единиц, левее — количество двоек, затем количество четверок и т. д.

Таким образом, любое натуральное число кодируется в последовательный ряд из нулей и единиц — это и будет являться двоичной системой счисления. Решение такой задачи покажем на примере ниже.

10112 = 1*23 + 0*2*2+1*21+1*20 =1*8 + 1*2+1=1110

Как известно, двоичная система счисления используется вычислительной техникой для хранения информации, а также для преобразования данных в графические изображения. В свою очередь обработка двоичного кода требует предварительного размещения каждой цифры внутри особой электронной схемы (триггера). Эта схема может пребывать в одном из двух состояний — «ноль» или «единица».

Отдельное число, состоящее из нескольких цифр, сохраняется группой триггеров — регистром. Оперативная память компьютера фактически является совокупностью таких регистров.

Двоичная система счисления

Если в десятичной системе счисления числа записываются с помощью десяти различных символов (от 0 до 9), то в двоичной системе — с помощью всего двух символов: 0 и 1. Такая система необходима для всех устройств, в которых информация представлена в виде последовательностей двух возможных состояний носителя, а это практически вся современная вычислительная техника.

Так же, как в десятичной системе разряды являются степенями основания 10, в двоичной системе разряды являются степенями основания 2:

10 000 000 0001 000 000 000100 000 00010 000 0001 000 000100 00010 0001000100101
10 1010 910 810 710 610 510 410 310 210 110 0
10245122561286432168421
2 102 92 82 72 62 52 42 32 22 12 0

При этом значением числа будет сумма значений всех разрядов. Например, переведем в привычный десятичный вид двоичное число 110001:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

Или то же самое чуть иначе:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

1

Биты и байты

В современных вычислительных системах информация представлена не в виде непрерывного потока двоичных символов (условных нолей и единиц), а за единицу информации, как правило, принимается байт (byte).
Байт состоит из восьми битов (т.е. это восьмиразрядное двоичное число), соответственно, он имеет 256 (2 8 ) возможных значений.

2

Именно поэтому стандартные варианты разрядности кратны восьми. Например, для операционных систем это 32 или 64 разряда (или бита), а для цифрового звука: 8, 16, 24 и 32.

Важно не запутаться в трех основных значениях, которые определяются разрядностью числа: количество возможных значений, максимальное значение и значение старшего бита/разряда.
Например, для 8-разрядного числа количество возможных значений = 256 (0 — 255), максимальное значение = 255, а значение старшего бита = 128.

Двоичная система счисления

двоичные цифры

Древних римлян часто поминают дурным словом за их громоздкую систему записи чисел. Люди не любят римские числа, так как они обременяют вычисления. Никто не обрадуется перспективе перемножать XLVII и DCDXXIV. А вот задача умножить 47 на 924 не выглядит настолько угрожающей (хотя большинство из нас все равно побежит за калькулятором). Впрочем, прежде чем сбрасывать римские числа со счетов как причудливый анахронизм, нам необходимо признать, что их основополагающий принцип – буквы вместо цифр – используется до сих пор. Этот ключевой аспект римских чисел обрел новое воплощение. Что легче прочесть?

• Реновация школ в нашем округе обойдется в 23000000 долларов
• Реновация школ в нашем округе обойдется в 23 млн долларов

Разумеется, я не стал разделять разряды в первом случае, чтобы число было сложнее прочесть (и я попал в точку, не правда ли?). Но, даже если проставить пробелы, фраза «Пентагон требует дополнительные 19 000 000 000 долларов» сложнее для восприятия, чем «Пентагон требует дополнительные 19 млрд долларов». Иногда удобнее использовать слова вместо чисел.

Мнимое преимущество позиционной системы счисления (это такая система счисления, в которой значение каждого символа в записи числа зависит от его позиции/разряда) – это то, что в ней проще производить вычисления. Но давайте задумаемся о том, сколько сил уходит на перемножение двух чисел. Во-первых, нам необходимо запоминать дополнительные математические данные. К тому же мы обязаны помнить таблицу умножения. Во-вторых, мы проделываем многоуровневую процедуру: сортируем числа по разрядам, умножаем по соответствующему правилу, получаем промежуточные данные, складываем.

Да, десятичные числа легче перемножать, чем их римские аналоги, однако это по-прежнему утомительно. Возникает вопрос, есть ли способ записывать числа, который бы облегчал вычисления. Мы выяснили, что да, есть, но для этого придется пожертвовать наглядностью.

Единичная система счисления

Простейший способ записи чисел – единичная система счисления: мы просто записываем столько же символов (будем использовать цифру 1), сколько единиц в интересующем нас числе. Например, число 3 окажется трехзначным: 111. Сложение и умножение становятся исключительно простыми. Чтобы сложить 3 и 5, мы просто запишем два числа, 111 и 11111, друг за другом (без пробела) – и вот он, ответ: 11111111. Умножать тоже просто. Мы запишем одно число вертикально, а другое горизонтально и получим следующую таблицу:

единичная система счисления

Затем мы заполним таблицу, поставив единичку в каждом столбце и в каждой колонке:

единицы

Наконец, мы выпишем все единички в ряд и получим ответ: 111111111111111. Складывать и перемножать числа в единичной системе счисления существенно проще, чем десятичные или римские числа. Разумеется, такая простота вычислений дается ценой титанических затрат внимания и времени. Никому не захочется прибегать к этому методу, чтобы перемножить 47 и 924.

Компромисс

Числа, записанные в двоичной системе счисления (система счисления с основанием 2), не так привычны нам, как десятичные или римские, но с ними проще делать вычисления. Вот почему в компьютерах используется именно двоичная система. Чтобы разобраться, как она устроена, нам нужно припомнить особенности десятичной системы.

Для записи чисел в десятичной системе счисления используют десять символов, располагаемых в разных комбинациях в ряд по горизонтали. Значение символа зависит от его места в ряду. 29 и 92 означают разные числа, потому что 2 и 9 занимают разные позиции. 29 означает «два десятка и девять единиц». 5804 означает «пять тысяч, восемь сотен, ни одного десятка и четыре единицы». Позиция цифры в десятичном числе означает, на какую степень десяти мы ее умножаем. Напомним, что показатель степени означает, сколько раз мы перемножаем основание: например, 10³ = 10 × 10 × 10. Естественно, 101 = 10. По договоренности, 100 = 1. Это логично, так как каждая следующая степень десяти в десять раз больше предыдущей. Разряды растут справа налево: единицы, десятки, сотни, тысячи, десятки тысяч и т. д. Иными словами, запись 5804 означает:

5 × 10³ + 8 × 10² + 0 × 101 + 4 × 100

Чем больше символов в десятичном числе, тем труднее его прочесть. Обычно каждый четвертый разряд отделяют пробелом или запятой. В англоязычных странах в качестве разделителя разрядов используется запятая, в России – неразрывный пробел, который ставится только в числах с пятью и более разрядами. Двоичная система устроена схожим образом, просто позиция в записи означает, на какую степень двух (а не десяти) мы должны умножить эту конкретную цифру. В двоичной системе счисления используются всего два символа: 0 и 1. Разряды здесь тоже растут справа налево, обозначая количество единиц, двоек, четверок, восьмерок и т. д. Например, в двоичной записи 10110 означает:

1 × 2⁴ + 0 × 2³ + 1 × 2² + 1 × 21 + 0 × 20 = 16 + 4 + 2 = 22

Проверьте, насколько вы ориентируетесь в новой теме: чему равно число 42 в двоичной системе и чему равно число 110112 в десятичной? (чтобы отличить запись в двоичной системе от записи в десятичной, мы будем ставить нижний индекс: 11012 или 110110).

Вычисления

Двоичные числа труднее для чтения, чем десятичные. Двоичная запись 1011001 кажется менее привычной, чем десятичная запись того же числа: 89. Преимущество двоичных чисел в том, что их использование облегчает вычисления. Вместо огромного количества математических данных нам необходимы всего две таблицы:

Заметьте, что в таблице умножения 10 означает число два. Сложение двоичных чисел устроено так же, как в десятичной системе. Например, нам нужно найти сумму 101002 и 11102. Расположим эти числа друг над другом:

Дальше нужно двигаться справа налево, складывая цифры в каждом столбце и при необходимости перемещая единицу на столбец влево. В нашем случае мы сложим два нуля и получим ноль:

Дальше идет столбец двоек. Мы складываем 1 и 0 (переносить ничего не требуется):

Дальше – столбец четверок. Мы складываем 1 и 1, получаем 10, пишем 0, держим 1 в уме и переносим на столбец влево:

Следующий столбец – восьмерки. Складываем 1 и 0 и 1, получаем 10, пишем 0 и держим 1 в уме:

Заканчиваем на столбце, означающем, сколько раз в числе встречается 16. Сложение дает 10, мы пишем 0 в текущем столбце и 1 в столбце с разрядом 32:

Мы обнаружили, что 10100 + 1110 = 100010.
Переведем это на язык десятичных чисел:
101002 = 20, 11102 = 14, 1000102 = 34.
Разумеется, 20 + 14 = 34.

Умножение в двоичной системе проще, чем в десятичной. Достаточно усвоить два принципа: сложение двоичных чисел (мы в нем только что разобрались) и умножение на степени двойки.

Умножение числа на 10 в десятичной системе не представляет сложности: мы просто добавляем цифру 0 справа: 23 × 10 = 230. Точно так же выглядит умножение на 2 в двоичной системе: 1101 × 10 = 11010. В случае десятичных чисел это очевидно, в случае двоичных 1101 означает:

1 × 8 + 1 × 4 + 0 × 2 + 1 × 1.
Умножение на 2:
1 × 16 + 1 × 8 + 0 × 4 + 1 × 2 + 0 × 1
Лишний ноль на конце дает 11010.

Умножение на 4, 8 и другие степени двойки тоже просто: например, умножение на 810 (10002) равнозначно приращению трех нулей с правой стороны числа. Итак, умножение превращается в игру «перемести-и-добавь-цифры». Проиллюстрируем это на примере умножения 11010 на 1011. Для начала запишем второе число так:

1011 = 1000 + 10 + 1.
Умножение на 11010 можно представить так:

11010 × 1011 = 11010 × (1000 + 10 + 1) = 11010 × 1000 + 11010 × 10 + 11010 × 1 = 11010000 + 110100 + 11010.

Удобнее умножать в столбик:

умножение двоичных чисел

А вот и ответ:

Давайте переведем числа в десятичные, чтобы удостовериться, что все правильно:
110102 = 16 + 8 + 2 = 26;
10112 = 8 + 2 + 1 = 11;
1000111102 = 256 + 16 + 8 + 4 + 2 = 286.
Мы не ошиблись: 26 × 11 = 286.

Дроби

В десятичной системе мы можем записывать не только целые числа. Если поставить в конце запятую, мы получим новые места для цифр: по мере движения вправо степени десяти будут все меньше. Например, 34,27 – это компактный способ записи такого выражения:

Двоичная система тоже позволяет записывать дробные значения. Каждую следующую цифру после запятой (в случае с двоичной системой неправильно говорить «десятичная запятая», лучше называть ее двоичной запятой, или запятой в позиционном представлении числа) мы умножаем на предыдущую степень двойки. Например, 101,0112 означает:

Непривычный способ записать одну вторую: 0,12! Есть и другие системы счисления, помимо десятичной, единичной и двоичной. Программисты нередко пользуются шестнадцатеричной системой счисления. В десятичной системе 10 цифр (от 0 до 9), в шестнадцатеричной нам нужно 16 разных символов, поэтому числа от 10 до 15 обозначают с помощью букв от A до F. В третичной системе мы пользуемся цифрами 0, 1 и 2, здесь все строится на степенях тройки. Скажем, 11023 означает:

1 × 27 + 1 × 9 + 0 × 3 + 2 × 1 = 38

В дробях первая позиция справа от запятой означает умножение на одну третью, вторая позиция – на одну девятую и т. д.:

Ответ на задачу

Если представить 42 в виде суммы степеней двойки, мы увидим, что это 1010102. А число 110112 можно представить как 16 + 8 + 2 + 1 = 27.

Двоичные числа и двоичная арифметика

Аннотация: Рассматривается двоичная система счисления как частный случай позиционной системы и основные правила двоичной арифметики.

Позиционной называется система счисления, в которой вес разряда числа определяется его позицией в записи числа [1].

Вспомним нашу привычную десятичную систему счисления, в которой мы с детства производим все расчеты. Уже в начальной школе мы привыкли к терминам «единицы», «десятки», «сотни», «тысячи», «десятые», «сотые», «тысячные» и не задумываемся над тем, что они означают вес разряда, выраженный в виде числа, равного 10^<k>, где k — целое число . Например, число 125, 46 можно представить в виде суммы:

125,46 = 1cdot 10^<2 ></p><p>+ 2cdot 10^ + 5cdot 10^ + 4cdot 10^ + 6 cdot 10 ^.

сотни десятки единицы десятые доли сотые доли

Y_<10></p><p>Аналогично любое число в десятичной системе счисления можно представить в виде подобной суммы:

Y_<10>= а_ cdot 10^+ а_ cdot 10^+ … +а_ cdot 10^ + a_ cdot 10^ + a_cdot 10^ +…+ a_cdot 10^ = sumlimits_^> ,( 11.1)

где n— количество знаков в целой части числа, m— количество знаков в дробной части числа, 10^<i> — вес i-го разряда, а_<i> — весовой коэффициент для i-го разряда числа. Количество возможных вариантов значения коэффициента а_<i> в десятичной системе счисления равно 10, поскольку для записи чисел в ней используются десять знаков — арабские цифры «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9». Число 10является основанием системы счисления. Исторически сложилось, что десятичная система получила наибольшее распространение, хотя по этому принципу можно сделать аналогичную запись в любой другой системе счисления c любым другим основанием. В табл. 11.1 прослежива ется аналогия между позиционными системами счисления.

Основание системы счисления — это число, равное количеству знаков, которые используются в этой системе для записи чисел.

b

Для числа в системе счисления с основанием выражение (11.1) преобразуется к виду:

Y_<b>= а_ cdot b^+ а_ cdot b^+ … +а_ cdot b^ + a_ cdot b^ + a_cdot b^ +…+ a_cdot b^ =sumlimits_^> .( 11.2)
Таблица 11.1. Параметры позиционных систем счисленияНазвание системы счисления Основание системы счисления Знаки, использующиеся для записи чисел
Двоичная20, 1
Троичная30, 1, 2
Четверичная40, 1, 2, 3
Восьмеричная80, 1, 2, 3, 4, 5, 6, 7
Десятичная100, 1, 2, 3, 4, 5, 6, 7, 8, 9
Шестнадцатеричная160, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

С началом развития цифровой вычислительной техники большой интерес стала вызывать двоичная система, поскольку вычислительная машина любого поколения и любой степени сложности — это совокупность логических схем. Работа элементов этих схем основана на ключевом режиме работы транзистора, в котором он может быть только в двух состояниях, принимаемых за логический 0 и логическую 1.

Запись двоичного числа, как будет показано ниже, как правило, довольно длинна и громоздка, поэтому для более короткой записи двоичных чисел применяются восьмеричные и шестнадцатеричные числа. Выбор именно этих систем обусловлен тем, что их основания равны целой степени числа 2. Основание восьмеричной системы 8= 2^<3>, а основание шеснадцатиричной системы — это 16 = 2^<4>. Для записи шестнадцатеричных чисел арабских цифр не хватает, поэтому используются первые шесть заглавных букв латинского алфавита.

Итак, далее мы подробно рассмотрим именно эти позиционные системы — двоичную, восьмеричную, шестнадцатеричную и их связь с привычной нам десятичной системой счисления.

Приведем примеры записи чисел в указанных системах и найдем их десятичные эквиваленты по формуле (11.2).

Для двоичного числа:

10111,01_<2 ></p><p>= 1 cdot 2^ + 0cdot 2^ + 1cdot 2^ +1cdot 2^ + 1cdot 2^ + 0cdot 2^+1cdot 2^ = 16 + 4 + 2 + 1 + cfrac = 23,25.

Здесь и далее будем придерживаться следующего правила: числа в двоичной, восьмеричной и шестнадцатеричной системах записываются с указанием основания, десятичные — без этой записи.

Для восьмеричного числа:

302, 02_<8></p><p>= 3 8^ + 0 8^ + 2 8^ + 0 8^ + 2 8^ = 3 cdot 64 + 2 cdot 1 + 2 cdot cfrac approx 194,03.

Для шестнадцатеричного числа:

1Е, 03_<16 ></p><p>= 1 16^ + 14 16^ + 0 16^ + 3 16^ = 16 + 14 + 3 cdot cfrac approx 30, 01.

Округление относится к дробной части числа, целая часть переводится точно. Особенностью перевода из шестнадцатеричного кода в десятичный код является то, что в качестве коэффициента а_<i> используется десятичный эквивалент шестнадцатеричного знака в соответствии с таблицей 11.2. Для нашего примера вместо знака » Е» в расчетную формулу (11.2) подставляется десятичное число 14.

Из рассмотренных примеров видно, что общая формула (11.2) может использоваться для перевода числа из системы счисления с любым основанием в десятичную.

Перевод чисел из одной системы счисления в другую

Перевод из десятичной системы в любую другую. Перевод целых чисел

Целое десятичное число нужно поделить на основание новой системы счисления. Остаток от этого деления является самым младшим разрядом в новой записи числа. Результат деления вновь делится на основание. Остаток от этого деления будет следующим разрядом в новой записи числа, результат деления вновь делится на основание и т.д. до тех пор, пока в результате деления получится число, меньшее по величине, чем основание новой системы. Остаток этого последнего деления будет предпоследним разрядом в новой записи числа, а результат этого последнего деления — самым старшим разрядом в новой записи числа.

Проверка перевода осуществляется по формуле (11.2), так, как это показано ниже на примерах.

Пример. Перевести десятичное число 125 в двоичную, восьмеричную и шестнадцатеричную системы счисления. Проверить результаты по формуле (П11.2).

arraycolsep=0.05em begin</p><p> _2|8\ cline 8_|8\ clinecline 4 1\ cline 4 5 end \ 125_=175_8

arraycolsep=0.05em begin</p><p> _ |16\ cline 7\ cline 2>= 1+4+8+16+32+64=125 ;

  • в восьмеричном коде175_<8>= 1cdot 8^+ 7cdot 8^ + 5cdot 8^ = 64+56+5=125 ;
  • в шестнадцатеричном коде — 125 = 7D_<16>= =7cdot 16^ + 13cdot 16^ = 112 + 13 = 125.
  • Просто о двоичной системе счисления и двоичном коде. #1

    В рассмотренном примере при переводе вместо коэффициента а_<0>=D используется его десятичный эквивалент 13в соответствии с таблицей 11.2.

    Перевод из двоичной системы в шестнадцатеричную (восьмеричную)

    Как уже было сказано выше, шестнадцатеричный и восьмеричный коды используются для более компактной и удобной записи двоичных чисел. Так, программирование в машинных кодах осуществляется в большинстве случаев в шестнадцатеричном коде. Правила перевода для шестнадцатеричной и восьмеричной системы структурно одинаковы, отличия для восьмеричной системы отображаются в скобках.

    Двоичная запись числа делится на группы по четыре ( три ) двоичных знака влево и вправо от запятой, отделяющей целые и дробные части Неполные крайние группы (если они есть) дополняются нулями до четырех ( трех ) знаков. Каждая группа заменяется одним шестнадцатеричным ( восьмеричным ) знаком в соответствии с кодом группы (табл. 11.2).

    Таблица 11.2. Соответствие двоичных групп, шестнадцатеричных и восьмеричных знаковДвоичная группа Шестнадцатеричный знак Десятичный эквивалент Двоичная группа Восьмеричный знак
    0000000000
    0001110011
    0010220102
    0011330113
    0100441004
    0101551015
    0110661106
    0111771117
    100088
    100199
    1010A10
    1011B11
    1100C12
    1101D13
    1110E14
    1111F15
    • перевод в шестнадцатеричную систему:

    11110000001010,0101111_<2></p><p>=fbox fbox fbox fbox , fbox fbox = 3С0А, 5Е_;

    1100000110,10111_<2></p><p>=fbox fboxfboxfbox< 110 >, fboxfbox= 1406, 56_.

    Перевод из шестнадцатеричной (восьмеричной) системы в двоичную

    Обычно программы в машинных кодах записаны в шестнадцатеричной системе счисления, реже — в восьмеричной. При необходимости отдельные числа такой программы записываются в двоичном коде, например, при рассмотрении форматов регистров, кодов операции команд и т.п. В этом случае нужен обратный перевод из шестнадцатеричной ( восьмеричной) системы счисления в двоичную по следующему правилу.

    Каждая цифра (без всяких сокращений!) шестнадцатеричного ( восьмеричного ) числа заменяется одной двоичной группой из четырех ( трех ) двоичных знаков (табл. 11.2).

    • для шестнадцатеричного числа: 127, В6_<16 >= 000100100111,10110110_ = 100100111,1011011_ ;
    • для восьмеричного числа: 147,554_<8>= 001100111,101101100_= 1100111,1011011_.

    Как показано в примерах, крайние нули слева и справа при желании можно не писать, но такое сокращение делается уже после перевода в двоичную систему.

    Какие символы есть в двоичной системе счисления

    Двоичной системой счисления называется позиционная система счисления с основанием 2.

    Двоичный алфавит : 0 и 1.

    Для целых двоичных чисел можно записать:

    Правило перевода целых десятичных чисел в двоичную систему счисления

    Компактное оформление

    Двоичная арифметика

    Двоичная арифметика намного проще десятичной, т.к. перенос возникает в единственном случае — при двух единицах в одноименных разрядах.

    Двоичное сложение

    При сложении столбиком двух цифр справа налево в двоичной системе счисления, как в любой позиционной системе, в следующий разряд может переходить только единица. Результат сложения двух положительных чисел имеет либо столько же цифр, сколько у максимального из двух слагаемых, либо на одну цифру больше, но этой цифрой может быть только единица.

    Двоичное вычитание

    При выполнении операции вычитания всегда из большего по абсолютной величине числа вычитается меньшее и у результата ставится соответствующий знак.

    Двоичное умножение

    Операция умножения выполняется с использованием таблицы умножения по обычной схеме (применяемой в десятичной системе счисления) с последовательным умножением множимого на очередную цифру множителя.

    Рассмотрим примеры на умножение.

    При выполнении умножения в примере 2 складываются три единицы 1+1+1=11 в соответствующем разряде пишется 1, а другая единица переносится в старший разряд.

    В двоичной системе счисления операция умножения сводится к сдвигам множимого и сложению промежуточных результатов.

    Двоичное деление

    Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления.

    Рассмотрим примеры на деление

    Оцените статью
    TutShema
    Добавить комментарий