Какие факторы влияют на значение напряжения в электросети в случайный момент времени

Отклонения напряжения от номинальных значений проис­ходят из-за суточных, сезонных и технологических измене­ний электрической нагрузки потребителей; изменения мощ­ности компенсирующих устройств; регулирования напряже­ния генераторами электростанций и на подстанциях энерго­систем; изменения схемы и параметров электрических се­тей.

Отклонение напряжения определяется разностью между
действительным напряжением сети Uи номинальным Uном значением напряже­ния, В:

где U — установившееся (действующее) значение напряжения за интервал усреднения (см. п. 3.8).

Колебания напряжения вызываются резким изменением нагрузки на рассматриваемом участке электрической сети, например, включением асинхронного двигателя с большой кратностью пускового тока, технологическими установками с быстропеременным режимом работы, сопровождающими­ся толчками активной и реактивной мощности — такими, как привод реверсивных прокатных станов, дуговые сталеплавильные печи, сварочные аппараты и т.п.

Источники несимметричных составляющих напряжения в электрических сетях.

Наиболее распространенными источниками несимметрии напряжений в трехфазных системах электроснабжения являются однофазные нагрузки, в том числе: индукционные и дуговые электрические печи, тяговые нагрузки железных дорог, выполненные на переменном токе, электросварочные агрегаты,, осветительные установки.

Несимметричные режимы напряжений в электрических сетях имеют место также в аварийных ситуациях — при обрыве фазы или несимметричных коротких замыканиях.

Несимметрия напряжений характеризуется наличием в трехфазной электрической сети напряжений обратной или нулевой последовательностей, значительно меньших по величине соответствующих составляющих напряжения прямой (основной) последовательности.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

3.2 Провалы напряжения и перенапряжения

4.3.2.1 Провалы напряжения

Провалы напряжения обычно происходят из-за неисправностей, происходящих в сетях общего доступа или в электроустановках потребителей.

Провал напряжения, как правило, связан с возникновением и окончанием короткого замыкания или иного резкого возрастания тока в системе или электроустановке, подключенной к электрической сети. В соответствии с требованиями настоящего стандарта провал напряжения рассматривается как двумерная электромагнитная помеха, интенсивность которой определяется как напряжением, так и длительностью.

В трехфазных системах электроснабжения за начало провала напряжения принимают момент, когда напряжение в одной из фаз падает ниже порогового значения начала провала напряжения, за окончание провала напряжения принимают момент, когда напряжение во всех фазах возрастает выше порогового значения окончания провала напряжения.

Откуда 310 Вольт в сети 220В?Что такое действующее и амплитудное значение напряжения.

В контексте требований настоящего стандарта длительность провала напряжения может изменяться от 10 мс до 1 мин.

Пороговое значение начала провала считается равным 90 % опорного напряжения.

4.3.2.2 Перенапряжения

Перенапряжения, как правило, вызываются переключениями и отключениями нагрузки. Перенапряжения могут возникать между фазными проводниками или между фазными и защитным проводниками. В зависимости от устройства заземления короткие замыкания на землю могут также приводить к возникновению перенапряжения между фазными и нейтральным проводниками. В соответствии с требованиями настоящего стандарта перенапряжения рассматриваются как двумерная электромагнитная помеха, интенсивность которой определяется как напряжением, так и длительностью.

В контексте требований настоящего стандарта длительность перенапряжения может изменяться от 10 мс до 1 мин.

Характеристики перенапряжений приведены в приложении А.

4.3.2.3 Определение и оценка провалов напряжения и перенапряжений

Оба явления — провалы и перенапряжения — непредсказуемы и в значительной степени случайны. Ежегодная частота возникновения их зависит от типа системы электроснабжения и точки наблюдения. Кроме того, распределение провалов и перенапряжений во времени года может быть крайне неравномерным. Характеристики провалов напряжения и перенапряжений, а также данные об определении и оценке их приведены в приложении А.

3.3 Импульсные напряжения

Импульсные напряжения в точке передачи электрической энергии пользователю электрической сети вызываются, в основном, молниевыми разрядами или процессами коммутации в электрической сети или электроустановке потребителя электрической энергии. Время нарастания импульсных напряжений может изменяться в широких пределах (от значений менее микросекунды до нескольких миллисекунд).

Импульсные напряжения, вызванные молниевыми разрядами, в основном, имеют большие амплитуды, но меньшие значения энергии, чем импульсные напряжения, вызванные коммутационными процессами, характеризующимися, как правило, большей длительностью.

Значения импульсных напряжений в сетях низкого, среднего и высокого напряжения приведены в приложении Б.

Случайные процессы в системах электроснабжения

Определение 1

Случайный процесс (стохастический процесс) – это множество случайных величин, индексированных некоторым параметром, чаще всего временным или пространственным.

Все случайные процессы делятся на:

  1. Дискретные по времени. Таковым случайный процесс Х(t) является в том случае, если система, где он протекает, меняет свое состояние исключительно в моменты t1, t2. количество которых счетно или конечно.
  2. Процессы с непрерывным состоянием. Таковым случайный процесс является, если его значение — непрерывная случайная величина.
  3. Стационарные процессы. Таковым случайный процесс является, если все многомерные законы находятся в зависимости от взаимного расположения моментов времени, но не от их значений.
  4. Процессы со стационарным приращением определенного порядка. Таковым случайный процесс является, если закономерности приращения неизменны.
  5. Нормальные процессы. Таковым случайный процесс является, если ординаты случайной функции подчиняются нормальному закону распределения.
  6. Процессы с независимым приращением. Таковым случайный процесс является, если для любого набора t1, t2, …, tn (где, n > 2, t1 ∠ t2 ∠ . tn ) случайные величины независимы в совокупности.
  7. Эргодические процессы. Таковым случайный процесс является, если в процессе определения моментных функций стационарного процесса усреднение по статистическому ансамблю может быть заменено операцией усреднения по времени.
  8. Ветвящиеся случайные процесс. Таковым случайный процесс является, если он описывает явления, которые связаны с превращением, делением или размножением рассматриваемого объекта.
  9. Импульсные случайные процесс.

Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Определение 2

Импульсный случайный процесс – это процесс, который представляет собой последовательность одиночных импульсов, параметры которых изменяются случайным образом от импульса к импульсу.

Для исследования случайных процессов могут быть использованы метод Ланжевена, кинетическое уравнение, уравнение Фоккера-Планка, метод формирующих фильтров, моделирование случайных процессов, методы стохастического анализа, корреляционные функции, а также прочие численные методы.

Случайные процессы в системах электроснабжения

Примерами случайных процессов, которые могут возникать в системах электроснабжения являются:

  1. Коэффициент мощности нагрузки.
  2. Напряжения в узлах электрической сети.
  3. Электрическая нагрузка.
  4. Частота в электрической сети.

Рассмотрим использование теории случайных процессов на примере напряжения в системе электроснабжения по схеме, которая представлена на рисунке ниже.

Рисунок 1. Схема. Автор24 — интернет-биржа студенческих работ

Начинай год правильно
Выигрывай призы на сумму 400 000 ₽

Напряжение в любой точке Un зависит от напряжения, которое образовалось в начале линии U0, а также потерь в линии напряжения /U0n:

Рисунок 2. Формула. Автор24 — интернет-биржа студенческих работ

Изменения реактивных и активных нагрузок приемников электрической энергии имеют случайный характер. Эти величины зависят от изменения их нагрузок во времени, случайных отключений и включений приемников и т.п. Согласно вышеприведенной формуле потери напряжения в сети — линейная функция нагрузки, поэтому изменения напряжения в сети также является случайным процессом. На рисунке ниже представлены суточные реализации случайного процесса изменения напряжения U(t), которые снимаются при помощи самопишущего вольтметра, расположенного в какой-либо точке электрической сети.

Рисунок 3. Суточные реализации случайного процесса изменения напряжения. Автор24 — интернет-биржа студенческих работ

При исследованиях напряжения нецелесообразно применять законы распределения функции, потому что, как правило, достаточно знание числовых характеристик, таких как функция дисперсии и функция математического ожидания. На рисунке ниже представлен рисунок математического ожидания для изменения напряжения в системе электроснабжения и график среднего квадратичного отклонения, который в большинстве случаев более удобен, чем дисперсия.

Рисунок 4. Графики. Автор24 — интернет-биржа студенческих работ

Среднее квадратичное отклонение может быть рассчитано следующим образом:

Рисунок 5. Формула. Автор24 — интернет-биржа студенческих работ

где Dv(t) — функция дисперсии.

Если известны функции математического ожидания и среднее квадратичное отклонение, то можно определить диапазон изменений всех возможных реализаций случайного процесса. Изменение напряжения в системе электроснабжения представляет собой случайную величину в каждом сечении, а весь случайный процесс семейством данных величин, которые зависят от времени.

В соответствии с правилом “трех сигм” с большой вероятностью принято считать, что почти все значения случайной функции находятся в пределах функции математического ожидания и квадратичного отклонения (на выше представленном графике данными границами являются пунктирные линии). Эти кривые позволяют с высокой точностью определить все возможные значения напряжения в системе электроснабжения, что способствует принять необходимые меры, направленные на улучшение рассматриваемого параметра.

Причины появления скачков напряжения

Существует достаточное количество объективных и субъективных причин природного, аварийного и техногенного характера для появления скачков напряжения в электрических сетях. Ниже постараемся перечислить основные.

Причина появления скачка параметров тока кроется у нас дома. Сегодня современный дом очень насыщен мощными электрическими приборами. В домах со старой проводкой это очень опасно. Но и в новых домах часто бывает, что нагрузка не может быть рассчитана на использование очень мощных приборов по причине подключения всего нового дома к «старым электрическим сетям». На практике часто происходит следующее. В доме включаются несколько мощных электрических приборов, это приводит к падению параметров тока в сети. При резком отключении мощного прибора или нескольких мощных электрических приборов происходит резкий скачок.

Нестабильность в работе трансформаторной подстанции

Большинство трансформаторных подстанций, осуществляющих электроснабжение в распределительных и транспортирующих сетях, было построено достаточно давно. Оборудование, установленное на этих подстанциях, имеет сегодня значительный износ. Кроме того, многие подстанции работают с большой перегрузкой ввиду увеличения потребления электроэнергии. В результате на подстанциях случаются сбои в работе оборудования, приводящие к возникновению скачков.

Сотни тысяч километров линий электропередач окутывают все города и поселки нашей страны. К каждому дому, к каждому участку подходит линия электроснабжения. Перефразировав известную фразу из популярного фильма, можно сказать, что без электричества сегодня и «не туда», «и не сюда». Линии электропередач построенные десятки лет назад, не молодеют и сегодня. А значит, вероятность обрывов и замыкания на линиях передач существует. Такие аварии могут спровоцировать большие скачки электрического напряжения.

Влияние отклонений напряжения на работу электроприемников

Влияние отклонений напряжения на работу электроприемников

Значительное влияние напряжения сети на работу электроприемников заставляет уделять большое внимание поддержанию напряжения на зажимах потребителей, близкого к номинальному напряжению. Подводимое к потребителям напряжение является одним из качественных показателей электроэнергии.

Изменения напряжения в сети можно классифицировать следующим образом:

1. Медленно протекающие изменения напряжения, которые обычно и бывают при работе сети. Эти изменения называются отклонениями напряжения . Отклонения напряжения определяются как разность действительного напряжения на зажимах электроприемников и номинального напряжения. Отклонения напряжения могут быть отрицательными и положительными величинами. Первым соответствуют понижения напряжения по отношению к номинальному, вторым — повышения напряжения .

Отклонения напряжения в электрических сетях обусловливаются изменениями нагрузок сети, режимов работы электростанций и т. д.

2. Быстро протекающие изменения напряжения вследствие аварий в электрических системах и других причин. В качестве примеров можно указать на короткие замыкания, качание машин, включение и отключение одного из элементов установки и т. п. Быстро протекающие изменения называются колебаниями напряжения .

Все приемники электрической энергии конструируются для работы при определенном номинальным напряжении. Отклонения напряжения от номинального на их зажимах ведет к ухудшению работы электроприемников.

Изменение основных характеристик ламп накаливания в зависимости от напряжения на их зажимах дано на рис. 1.

Характеристики ламп накаливания

Рис. 1. Характеристики ламп накаливания: 1 — световой поток, 2 — светоотдача, 3 — срок службы (цифры на ординате для кривых 1 и 2).

Приведенные кривые показывают большое влияние напряжения на работу ламп накаливания. Например, снижению напряжения на 5% соответствует уменьшение светового потока на 18%, а понижение напряжения на 10% вызывает снижение светового потока лампы более чем на 30%.

Снижение светового потока ламп приводит к уменьшению освещенности рабочего места, в результате чего уменьшается производительность труда и ухудшаются качественные показатели.

Плохое освещение рабочих мест, проходов, улиц и т. д. увеличивает количество несчастных случаев с людьми. Понижение напряжения ухудшает к. п. д. ламп накаливания. Снижение напряжения на 10% уменьшает световую отдачу лампы (лм/м/вт) на 20%.

Влияние отклонений напряжение на работу ламп накаливания

Повышение напряжения сети приводит к увеличению к. п. д. ламп. Но повышение напряжения влечет за собой резкое уменьшение срока службы ламп. При повышении напряжения на 5% срок службы ламп накаливания уменьшается вдвое, а при повышении на 10% — более чем в 3 раза.

Люминесцентные лампы менее чувствительны к отклонениям напряжения сети. Отклонения напряжения на 1 % в среднем вызывают изменение светового потока лампы на 1,25%.

У бытовых нагревательных приборов (плитки, утюги и т. п.) нагревательные элементы состоят из активных сопротивлений. Мощность, отдаваемая ими в зависимости от напряжения сети, выражается уравнением

P = I 2 R = U 2 /R

показывающим, что снижение напряжения сети вызывает резкое уменьшение мощности, отдаваемой нагревательным прибором. Последнее приводит к значительному увеличению времени работы прибора и перерасходу электроэнергии на приготовление пищи и т. д.

Влияние отклонений напряжение на работу двигателей

Характеристики всех других бытовых электроприборов также зависят от подведенного напряжения. При изменениях напряжения на зажимах электродвигателей изменяются вращающий момент, потребляемая мощность и срок службы изоляции обмоток.

Вращающие моменты асинхронных электродвигателей пропорциональны квадрату приложенного к их зажимам напряжения. Если момент двигателя при номинальном напряжении принять за 100%, то при напряжении 90%, например, вращающий момент составит 81%. Сильное снижение напряжения может даже привести к остановке электродвигателей или невозможности пустить электродвигатель, приводящий в движение машину с тяжелыми условиями пуска (подъемники, дробилки, мельницы и т. д.). Недостаточные (вращающие моменты электродвигателей могут явиться причиной брака продукции, порчи полуфабриката и т. п.

Зависимости изменения потребляемой электродвигателями мощности от напряжения при стационарном режиме работы системы называются статическими характеристиками электрической нагрузки потребителей .

При понижении напряжения активная мощность, потребляемая электродвигателем, уменьшается вследствие уменьшения вращающего момента и связанного с этим увеличения скольжения.

Увеличение скольжения вызывает возрастание потерь активной мощности в двигателе. При увеличении напряжения скольжение уменьшается и потребная для привода механизма мощность увеличивается. Потери активной мощности в электродвигателе уменьшаются.

Анализ показывает, что активная нагрузка от электродвигателей при изменениях напряжения, соответствующих нормальным режимам работы системы, меняется незначительно и потому может приниматься постоянной.

Электродвигаетель и схема управления токарного станка

Изменение реактивной нагрузки электродвигателей от напряжения зависят от соотношения реактивной мощности намагничивания и реактивной мощности рассеяния двигателей. Реактивная мощность намагничивания изменяется примерно пропорционально четвертой степени напряжения. Реактивная мощность рассеяния, зависящая от тока электродвигателей, изменяется обратно пропорционально примерно второй степени напряжения.

При снижениях напряжения против номинального (до некоторой величины) реактивная нагрузка электродвигателей всегда снижается. Объясняется это тем, что реактивная мощность намагничивания, составляющая до 70% всей реактивной мощности, потребляемой электродвигателем, снижается быстрее, чем увеличивается реактивная мощность рассеяния.

Зависимости потребления реактивной мощности от напряжения сети для некоторых потребителей приведены на рис. 2. Эти кривые — статические характеристики электрических нагрузок потребителей в целом, т. е. с учетом влияния на них трансформаторов, освещения и т. д.

Статические характеристики электрических нагрузок

Рис. 2. Статические характеристики электрических нагрузок: 1 — бумажный комбинат, cos φ = 0,92, 2 — металлообрабатывающий завод, cos φ = 0,93, 3 — текстильная фабрика, cos φ = 0,77.

Кривая 1 бумажного комбината идет очень круто. Чем меньше загрузка двигателей и чем выше коэффициент мощности их при номинальном напряжении, тем круче идет кривая зависимости потребляемой реактивной мощности от напряжения сети. Длительное снижение напряжения на 10% на зажимах электродвигателей при полной их загрузке приводит вследствие более высокой температуры обмоток к износу изоляции двигателей примерно вдвое скорее, чем при номинальном напряжении.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Почему происходят скачки напряжения в энергетической сети

Обратимся к закону Ома (точнее к его следствиям). Мощность потребления исчисляется, как произведение величины силы тока на значение напряжения. Если генерирующее устройство имеет ограничение по мощности нагрузки, то при увеличении тока потребления, напряжение в линии пропорционально снижается. Аналогично происходит обратный процесс: если при фиксированной мощности генератора, снижается ток потребления, резко повышается напряжение в сети.

Информация: Речь идет об исправной линии электропередач.

Разумеется, генерирующие электроустановки проектируются таким образом, чтобы напряжение в сети автоматически стабилизировалось.

Скачки напряжения в электросети 2

Однако на практике, параметров стабилизирующих схем часто недостаточно.

Еще одна причина, не связанная с неисправностью сети — перекос фаз. Как правило, все трансформаторные подстанции работают по трехфазной схеме 380 вольт. Возьмем, к примеру 90 квартирный многоэтажный дом. Питание помещений организуется следующему принципу: общая нейтраль, и по одной фазе 220 вольт на каждые 30 квартир.

Если на одной из фаз пропадает нагрузка (обрыв линии, сработал автомат защиты, и прочее), на оставшихся вводах автоматически возрастет напряжение.

Информация: Существует еще одно отклонение от параметров, изменение частоты переменного тока (штатно должно быть 50 Гц). Но это явление встречается реже.

Причины техногенного характера

  1. В многоквартирных домах, особенно старой постройки, линии электросети сильно изношены, сечение может не соответствовать нормативам Правил устройства электроустановок (ПУЭ). Кроме того, имеют место факты несанкционированного ремонта, самостоятельной замены проводки, выполненной несертифицированными домашними «электриками». Контактные группы (клеммные колодки) испорчены коррозией, многочисленными подгораниями точек контакта. Возникают скрутки проводов из различных металлов, что приводит к электрохимической коррозии.Скачки напряжения в электросети 3При таком состоянии проводки, даже исправная и качественная трансформаторная подстанция не в состоянии обеспечить стабильные параметры при изменении тока нагрузки. Особенно заметны скачки напряжения в электросети в летний период (когда жители включают кондиционеры), и при наступлении темноты.
  2. Трансформаторные подстанции построены еще в прошлом веке. В результате изношенности, оборудование не в состоянии противодействовать перегрузкам по току, поэтому постоянно возникают серьезные просады напряжения. Часть таких трансформаторов конструктивно не имеют средств стабилизации.Скачки напряжения в электросети 4
  3. Наращивание дополнительных мощностей потребления на линейном уровне. Любая подстанция имеет резерв по мощности. Если он не задействован, то кратковременные перегрузки гасятся запасом по току, и напряжение остается стабильным. В результате неконтролируемой застройки, энергетики вынуждены подключать новые линии на существующие сети, полностью выбирая резерв. иногда, по причине коррумпированности представителей энергетических компаний, застройщику удается даже превысить лимит потребления. Как следствие — энергосети постоянно работают в режиме перегрузки, и малейшее увеличение потребляемой мощности неминуемо приводит к скачкам напряжения.
  4. Рост энергетической нагрузки в масштабах каждой квартиры (домовладения). Современный житель (особенно в городской среде) неизбежно увеличивает количество используемых электроприборов. В каждой комнате устанавливается телевизор, в квартирах имеются компьютеры, посудомоечные машины, мультиварки. Кондиционер уже давно входит в стандартное оснащение жилища. Разумеется, каждый персональный ввод электросети ограничен автоматом защиты. Но его максимальный показатель по току не рассчитан на постоянное потребление на грани срабатывания. Когда в каждой квартире сила тока близка к порогу срабатывания автомата, сети испытывают значительные перегрузки, и напряжение падает.
  5. Обрыв или потеря контакта на линии нейтрали. В этом случае напряжение не пропадает (как при однофазном подключении), а резко возрастает. Превышение может составить несколько сотен вольт: зафиксированы случаи, когда напряжение в аварийной сети достигает 400–500 вольт. Понятно, что при большой нагрузке эти перепады приводят к срабатыванию линейных средств защиты. А если потребление ниже среднего, выходит из строя бытовая техника. Возможен даже пожар.Скачки напряжения в электросети 5
  6. Самовольная коммутация электросетей на вводе. Некоторые недобросовестные жильцы используют в качестве нейтрали, системы водопровода или отопления, для обхода приборов учета электроэнергии. В этом случае возникает разброс линии фазы и нуля. Помимо опасности прикосновения к радиаторам отопления, такие художества приводят к скачкам напряжения в сети.
  7. Подключение промышленного оборудования к линиям бытового назначения. Довольно часто можно наблюдать, как при строительстве домовладения, или объекта торговли (ларька), бригада работает с мощной бетономешалкой или сварочным трансформатором, запитанным от обычного щитка питания. Разумеется, потребление в активном режиме порядка 5–10 кВт в одной точке, приводит к просадам напряжения на линии.
  8. Случается, что бытовая линия электропередач расположена в непосредственной близости от высоковольтных мачт, либо контактного провода троллейбусного или трамвайного маршрута. В этом случае возможен эффект наведенного напряжения.
  9. Нельзя забывать о природных факторах. Речь идет не только о непосредственном грозовом разряде прямо в линию электропередач (хотя и такое случается).Скачки напряжения в электросети 6Статика является серьезной проблемой не только при прохождении сквозь ЛЭП грозового фронта (даже без молний), но и во время так называемых суховеев.

От нас (потребителей) зависит правильность эксплуатации электроприборов. Разумеется, в первую очередь необходимо следить за состоянием внутренних сетей с «нашей» стороны прибора учета. Защитные автоматы (пробки) должны быть исправны, внутренняя проводка соответствовать нагрузке. Если у вас розеточная сеть выполнена на проводе сечением 1.5 мм², нельзя использовать на этой линии мощные электроприборы.

Основные причины возникновения скачков напряжения в сети

Есть много причин различного характера, вызывающие отклонения напряжения от нормы в сети частного дома или квартиры. Рассмотрим наиболее распространенные случаи:

Попадание молнии в ЛЭП вызывает сильное перенапряжение сети

  1. Увеличение или уменьшение тока нагрузки в системе электроснабжения. Причина кроется в одновременном подключении к сети мощных электроприборов (электрические печи, бойлеры, масляные обогреватели и т.д.). Наибольший пик нагрузки приходится на вечерние часы, особенно в холодное время года, следствием этого является понижение напряжения.
  2. Перегрузка трансформаторной подстанции может стать причиной нестабильной работы ее оборудования. Проблема заключается в том, что большинство узлов энергосистем проектировались и строились более 30-40 лет назад, соответственно, они были рассчитаны на более низкую нагрузку. Для исправления ситуации необходима модернизация оборудования проблемных узлов, а это требует серьезных финансовых вложений.
  3. Причинами кратковременных скачков напряжения также могут быть аварии на ЛЭП или кабельных магистралях. Это может быть связано как с общим состоянием линий, так и неблагоприятными погодными условиями.
  4. Резкий скачок напряжения происходит при обрыве нуля или плохом электрическом контакте нулевого проводника. В первом случае произойдет повышение напряжения вплоть до 380 Вольт, во втором, будут наблюдаться кратковременные скачки с 220 до 380 В.
  5. Проблемы с внутридомовой разводкой электросети. Причины могут быть связаны с использованием при некачественных материалов, неправильно выполненным монтажом или «старой» проводкой. В результате происходят скачки и колебания напряжения, сопровождаемые сильными импульсными помехами.
  6. Бросок напряжения возникает в тех случаях, когда на смежной линии системы электроснабжения подключен мощный потребитель, например промышленный объект. Известно, что в момент включения электродвигателей образуются сильные пусковые токи, это приводит к тому, что начинает «прыгать» напряжение. Причем установка специальных сетевых фильтров на таком объекте только частично исправляет ситуацию. Заметим, что совсем необязательно жить рядом с промышленным объектом, чтобы ощутить все эти прелести, подобный эффект может давать небольшая мастерская, торговый центр или любое общественное здание оборудованное мощной вентиляционной системой.
  7. К возникновению импульсных перенапряжений может привести попадание молнии в ВЛ. Напряжение импульса может измеряться в киловольтах.

Это гарантировано выведет из строя включенные в розетки электрические приборы, несмотря на краткосрочность импульса (порядка нескольких миллисекунд) броска. Большинство устройств, обеспечивающих защиту, просто не успеют сработать.

  1. Возникают скачки и по техногенным причинам, одна из них – обрыв сетевого провода трамвайной или троллейбусной контактной сети с последующим попаданием на ВЛ. Это приведет к тому, что превышение нормального напряжения в сети составит порядка нескольких сотен вольт. На практике встречались случаи, когда в результате такой аварии выгорали (в буквальном смысле) электроприборы в ближайшем доме.
  2. Возникают скачки также при работе сварочного оборудования. Такая проблема более характерна для сельской местности, поскольку в хозяйстве часто возникает потребность для ремонта с применением сварки, например, подварить петли на воротах. Нередко некоторые умельцы с целью сэкономить подключают сварочное оборудование на вход, минуя счетчик и устройства защиты. В результате при образовании дуги происходят скачки и броски электрического тока в линии, от которой также запитаны дома соседей.

Мы назвали далеко не все причины, по которым образуются скачки входного напряжения, но приведенных примеров вполне достаточно, чтобы подвести итоги. Перепады и скачки могут быть вызваны:

  • Резким изменением нагрузки.
  • Авариями, вызванными воздействием стихии или имеющие техногенную природу.
  • Износом оборудования.
  • Отсутствием резерва мощности.

В первых двух случаях доказать вину компании, предоставляющей услуги, будет проблематично, в последних двух можно рассчитывать на получение компенсации.

Возможные последствия скачков напряжения

Изменения напряжения, выходящие за установленные нормами рамки, потребителям электроэнергии грозят выходом из строя электроприборов. Напомним, что при 220 вольтах нижняя максимально допустимая граница – 198,0 В, верхняя – 242 В.

Наибольшую опасность для домашних электроприборов представляют грозовые перенапряжения, поскольку величина импульса может достигать нескольких киловольт. Ниже представлен блок питания 40” телевизора после попадания разряда молнии в ВЛ, от которой был запитан частный дом. Ни реле напряжения, установленное на вводе, ни внутренняя защита и предохранители электронного устройства сработать не успели.

Блок питания телевизора после попадание молнии в ЛЭП

С большой вероятностью бытовая техника «сгорит», если перенапряжение вызвано обрывом нуля. В таких случаях напряжение начинает стремиться к 380,0 В (на практике обычно 300-320 В, но и этого достаточно для выхода приборов из строя).

Броски меньшого уровня вызывают сбои в работе электронного оборудования, а также сокращают срок эксплуатации техники, оборудованной компрессорами или электродвигателями. На электронагревательные приборы незначительные перепады и скачки практически не оказывают серьезного влияния, исключение составляет оборудование с электронной системой управления.

Колебания напряжения, показатели. Причины возникновения, последствия.

Колебания напряжения – быстрые изменения действующего значения напряжения, происходящие со скоростью 1-2% в секунду и более. Колебания напряжения амплитудой (размахом изменения напряжения), частотой и интервалами между следующими друг за другом изменениями напряжения [4].

Причина возникновения колебания напряжения – электроприемники с быстропеременными режимами работы

Колебания напряжения действуют на: увеличение потерь в сети; утомление зрения, снижение производительности, травматизм; снижение срока службы электронной аппаратуры; выход из строя конденсаторных батарей; неустойчивая работа систем возбуждения синхронных генераторов и двигателей; вибрации аппаратуры; возможны отпадания контакторов.

При работе ЭП с резкопеременной ударной нагрузкой в электросети возникают резкие толчки потребляемой мощности. Это вызывает изменения напряжения сети, размахи которых могут достигнуть больших значений. Эти явления имеют место при работе прокатных электродвигателей, дуговых электропечей, сварочных машин и т.д. Указанные обстоятельства крайне неблагоприятно отражаются на работе всех ЭП, подключенных к данной сети, в том числе и ЭП, вызывающих эти изменения.

Так, например, если время сварки у контактных машин в пределах от 0,02 до 0,4 с, то колебания напряжения даже малой длительности сказываются на качестве сварки.

При колебаниях напряжения, в результате которых напряжение снижается более чем на 15% ниже номинального, возможно отключение магнитных пускателей, работающих электродвигателей.

На предприятиях с существенной синхронной нагрузкой колебания напряжения могут приводить к выпадению привода из синхронизма и расстройству технологического процесса.

Колебания напряжения отрицательно сказывается на работе осветительных приемников. Они приводят к миганиям ламп, которые при превышении порога раздражительности могут отражаться на длительном восприятии людей.

Колебания напряжения, имеющие место при работе крупных синхронных двигателей с резкопеременной нагрузкой, определяются с учетом переходных процессов, т.к. при этом мощность, потребляемая ЭД, значительно отличается от мощности установившегося режима.

В соответствующих точках системы колебание напряжения, вызываемое изменениями (набросами) активной нагрузки на DР и реактивной нагрузки на DQ, может быть ориентировочно определено по формуле:

где DU – потеря напряжения, о.е.

DР, DQ – изменения (набросы) активной и реактивной трехфазной мощности ЭП, (МВт и Мвар);

R, X – активное и реактивное сопротивление на фазу (см. таблицу 4.1), Ом;

Z – полное сопротивление, Ом;

SK – мощность к.з. в точке, в которой проверяется колебания напряжения, МВА.

Элемент сетиСоотношения между активными и индуктивными сопротивлениями элементов сети r/x
Воздушные линии 110¸220 кВ0,125¸0,5
Кабельные линии 6¸10 кВ1,25¸5
Токопроводы 6¸10 кВ0,04¸0,11
Трансформаторы 2,5¸6,30,06¸0,143
Трансформаторы 63¸500 МВА0,02¸0,05
Реакторы РБА 6¸10 кВ до 1000 А0,02¸0,067
Паротурбинные генераторы 12¸60 МВт0,012¸0,02
Паротурбинные генераторы 100¸500 МВт0,0075¸0,01
Подстанции в распределительных сетях0,067 и выше

Активное сопротивление всех элементов сети, кроме кабелей, значительно меньше индуктивного. Но в заводских сетях крупных предприятий при широком внедрении токопроводов 6¸10 кВ и глубоких вводов 110¸220 кВ. Они становятся малопротяженными, и их доля резко снижается. Поэтому они не оказывают большого влияния на результирующее значение отношения r/x в целом по предприятию. Это позволит упрощенно рассчитать колебания напряжения при резкопеременных ударных нагрузках.

Исходя из вышеприведенных соотношений r/x при расчетах колебания напряжения, в среднем можно принять, что лежит она в пределах 0,1¸0,03. При этом отношение z/x получается примерно равным 1. С учетом этих допущений:

Учитывая малое отношение r/x элементов сети, активным сопротивлением вообще можно пренебречь. Тогда колебания напряжения можно определить по еще более простой формуле:

На основе изложенного, можно сделать вывод о том, что при заданных набросах DР и DQ значение колебаний определяется мощностью к.з. питающей сети, и чем последняя выше, тем меньше колебания.

Вторым существенным источником колебаний напряжения являются дуговые сталеплавильные печи (ДСП). При работе ДСП имеют место частые отключения, число которых достигают 10 и более в течение одной плавки. Наиболее тяжелые условия получаются в период расплавления металла и в начале окисления. При этом возникают эксплуатационные толчки тока. Значение тока при толчке зависит от вместимости печи, параметров печного трансформатора, полного сопротивления короткой сети.

При совместном питании ДСП и так называемой «спокойной» общецеховой нагрузки размах изменения напряжения DU на шинах вторичного напряжения 6¸10 кВ понизительного трансформатора ГПП можно с достаточной для практических целей точностью определить по формуле :

Таким образом, значения размахов изменения напряжения в основном определяется мощностью к.з. питающей сети.

Колебания напряжения вызываются резким изменением нагрузки на рассматриваемом участке электрической сети, например, включением асинхронного двигателя с большой кратностью пускового тока, технологическими установками с быстропеременным режимом работы, сопровождающимися толчками активной и реактивной мощности, такими, как привод реверсивных прокатных станов, дуговые сталеплавильные печи, сварочные аппараты и т.п.

Колебания напряжения характеризуются двумя показателями:

— размахом изменения напряжения dUt;

— дозой фликера Pt.

Оцените статью
TutShema
Добавить комментарий