Какая физическая величина является единой мерой различных форм движения и взаимодействия материи

энергия — способность к совершению работы, а работа совершается, когда на объект действует физическая сила (такая, как давление или гравитация).

Наиболее часто встречающаяся нам в повседневной жизни – механическая энергия. Это энергия непосредственного взаимодействия и движения физических тел и их частей. В рамках Механики (раздела Физики), механическую энергию подразделяют на потенциальную (для покоящихся тел) и кинетическую (для движущихся).

Суммарно потенциальная и кинетическая энергия системы тел составляют полную механическую энергию для этой системы тел.

Это энергия, заключенная в электромагнитном поле. В рамках Электродинамики (Раздела Физики), электромагнитная энергия включает в себя и такие виды энергии, как электрическая и магнитная.

Химическая энергия — пожалуй, самая распространенный и широко используемый вид энергии, как в древности, так и в наши дни. Костер, угли, горелка, спички и многие другие предметы, связанные с горением имеют в своей основе энергию химического взаимодействия органического вещества и кислорода.

Система измерения теплоты два века назад базировалась на представлении о том, что тепловая энергия сохраняется, никуда не пропадает, а только переходит из одного места в другое. Мы до сих пор пользуемся следующими правилами:

Для измерения количества тепла заставим его нагревать воду и умножим массу воды на приращение температуры. Если масса взята в кг, а разность А (температур) — в градусах Цельсия, то произведение их будет теплотой в Кал, или ккал.

При передаче тепловой энергии какому-то другому веществу, то сначала массу нужно помножить на повышение температуры, как и для воды, а результат затем помножить на «удельную теплоемкость» вещества.

5. Световая (Лучистая)

Световая энергия знакома всем людям всех времен с самого рождения. С древности известны такие источники световой энергии, как Солнце, Луна и Звезды, костер, факел, хемилюминесцентные животные и растения. В настоящее время Солнце продолжает оставаться основным и главнейшим источником энергии на Земле вообще и световой энергии в частности.

Все живое на Земле существует только благодаря лучистой энергии солнечного света. Если бы на нашей планете не было атмосферы, которая отражает и лишь частично поглощает световую энергию Солнца, поверхность земного шара там, где солнечные лучи падают на нее отвесно, получала бы за минуту 8,37 дж (2 калории) на 1 см2. Эта величина называется солнечной постоянной и измерена с большой точностью вне атмосферы Земли с помощью ракет.

6. Ядерная (Атомная)

Мирное использование источников ядерной энергии составляет основу промышленного производства и жизни таких стран, как Франция и Япония, Германия и Великобритания, США и Россия. И если две последние страны еще в состоянии заместить ядерные источники энергии на тепловые станции, то для Франции, или Японии это попросту невозможно.

Физические величины и их измерения. 7 класс.

Использование атомной энергии создает много проблем. В основном все эти проблемы связаны с тем, что используя себе на благо энергию связи атомного ядра (которую мы и называем ядерной энергией), человек получает существенное зло в виде высокорадиоактивных отходов, которые нельзя просто выбросить. Отходы от атомных источников энергии требуется перерабатывать, перевозить, захоранивать, и хранить продолжительное время в безопасных условиях.

7. Термоядерная (Термоядерного синтеза)

Холодно или жарко в нашем мире? На первый взгляд, материя Вселенной не так уж горяча. Дышим мы прохладным воздухом, пьем холодную воду, катаемся по льду, лепим снежки. Нас не греет черное ночное небо. Чтобы согреться, приходится зажигать костры и топить печи. Между тем, подавляющая масса вещества в мире испепеляюще горяча.

Те десятки градусов в ту или другую сторону от точки таяния льда (0 град Ц), в которых мы живем и к которым привыкли, — редкое исключение, крошечный уголок природы. Типичная же, наиболее распространенная температура вещества — это, как ни странно, миллионы, десятки миллионов, даже сотни миллионов градусов. До таких грандиозных температур нагреты звезды. Астрономы доказали, что именно в них сосредоточена львиная доля вещества нашего мира.

В раскаленном веществе Солнца очень много водорода. Но не обычного газа, а водородной плазмы: она состоит не из целых атомов, а из атомных осколков—ядер и электронов. При колоссальной температуре солнечных глубин частицы водородной плазмы испытывают весьма быстрое и энергичное беспорядочное движение. Ядра при этом с разгона налетают друг на друга. Иногда столкновение бывает таким сильным, что ядра преодолевают взаимное электрическое отталкивание (они ведь все заряжены положительно), тесно сближаются и сливаются воедино. Тогда из двух ядер обычного («легкого») водорода, т. е. из двух протонов, получается ядро тяжелого водорода — дейтрон. Вместе с тем вылетают прочь отходы реакции — электрон и нейтрино. Так в результате реакции синтеза освобождается термоядерная энергия.

Трудно представить без электроэнергии жизнь современного общества, экономическое, техническое и культурное развитие которого во многом обусловлено ее широким применением.

Разнообразное использование электроэнергии во всех областях народного хозяйства и быта объясняется рядом весьма существенных преимуществ ее по сравнению с другими видами энергии:

1. возможностью экономичной передачи на значительные расстояния;

2. простотой преобразования в другие виды энергии (механическую с помощью электродвигателей, тепловую с помощью электронагревательных приборов, световую с помощью электроламп и т.д.);

3. простотой распределения между любым числом потребителей любой мощности;

4. возможностью получения электроэнергии из других видов энергии (тепловой, гидравлической, атомной, энергии ветра и солнца и т.д.).

Виды энергии

На сегодняшний день различаются следующие виды энергии:

  • электрическая
  • химическая
  • механическая
  • световая
  • тепловая
  • ядерная
  • термоядерная.

Замечание 1

Существуют еще виды энергии, названия которых исходят не из физического смысла, а несут описательный характер. К ним относятся ветровая энергия, геотермальная энергия и другие.

В этих случаях физическая форма характера энергии заменяется названием ее источника. Поэтому правильно будет называть механической энергией ветра, тепловой энергией геотермальных источников и т.д.

Электрическая энергия является наиболее универсальным видом энергии. Источником электрической энергии является энергия воды на гидроэлектростанциях, преобразование тепловой энергии, полученной в процессе сгорания топлива на тепловых электростанциях. Также электрическая энергия вырабатывается в результате ядерных реакций на атомных электростанциях, когда ядерная энергия преобразуется в механическую, а механическая, в свою очередь, преобразуется в электрическую.

Начинай год правильно
Выигрывай призы на сумму 400 000 ₽

На химических предприятиях электроэнергия применяется для совершения электрохимических процессов – электролиз расплавов и растворов, электротермических процессов – нагревание, плавление и т. д., а также электромагнитных процессов.

В промышленности используются процессы, связанные с применением электростатических явлений, например, электрокрекинг углеводородов, осаждение туманов и разных видов пыли. Также в промышленности используются для контроля и автоматизации химических производств электроионные явления.

Широкое применение в химической промышленности получило превращение электрической энергии в механическую, что необходимо в основном для осуществления физических операций, таких как измельчение, смешение, дробление, работа компрессоров, насосов, вентиляторов и т.д.

Электроэнергия широко используется в повседневной бытовой деятельности.

Применение тепловой энергии в промышленности необходимо для осуществления различного рода физических операций, которые не сопровождаются химическими реакциями. К таким операциям относятся процессы дистилляции, нагрева, сушки, плавления, выпарки и т.д.

Большое количество тепловой энергии требуется для нагревания реагентов при проведении эндометрических процессов.

В процессе различных превращений атомных ядер или в процессе синтеза водорода в ядра гелия выделяется внутриядерная энергия. Внутриядерная энергия используется для производства электрической энергии на атомных электростанциях. Широкое распространение получили радиационно-химические процессы, в которых радиоактивное излучение применяется для осуществления различных химических реакций.

В результате экзотермических химических реакций выделяется химическая энергия, которая является важнейшим источником тепла. Это тепло используется для обогрева реагентов при проведении реакций. Также химическая энергия нашла широкое применение в аккумуляторах и гальванических элементах. В этом случае химическая энергия преобразуется в электрическую.

Световая энергия необходима при осуществлении различного рода фотохимических реакций, таких как галоидирование органических процессов, синтез хлористого водорода из элементов и других процессов.

В процессе фотоэлектрических явлений происходит преобразование световой энергии в электрическую. Это способность нашла применение в автоматическом контроле и управлении технологическими процессами.

Источники энергии

На промышленных предприятиях используются различные виды источников энергии. Они характеризуются по виду энергетических ресурсов, запасам, энергетической ценности.

По характеру энергетические ресурсы бывают возобновляемыми и невозобновляемыми.

Возобновляемыми источниками энергии являются энергия ветра, гидроэнергия, солнечная энергия, растительное топливо.

К невозобновляемым источникам энергии относятся природный газ, нефть, сланцы, уголь, которые после использования не могут быть воспроизведены снова.

Если рассматривать такую характеристику источников энергии, как энергетическая ценность, то она определяется количеством энергии, которое возможно получить при их применении. Например, для различных видов топлива энергетическая ценность характеризуется количеством квт×ч, которое получается при полном использовании теплоты сгорания килограмма либо кубического метра топлива. Для примера, энергетическая ценность каменного угля составляет 8 кВт×ч/кг, энергетическая ценность природного газа равна 10,6 кВт×ч/м3.

Использование энергетических ресурсов на практике определяется в первую очередь количеством запасов и географическим положением. Также влияет доступность использования, возможность транспортировки энергии на расстояния, возможность преобразования энергии и множеством других факторов.

На современном этапе возникла такая проблема, как поиск альтернативных источников энергии. Использование перечисленных традиционных источников энергии наносит вред окружающей среде. Кроме того, существует реальная угроза исчерпания топливных ресурсов для получения энергии.

Оцените статью
TutShema
Добавить комментарий