Как зависит скорость распространения волны от ее длины

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной .

Механические волны бывают разных видов. Если в волне частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, то волна называется поперечной . Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту (рис. 2.6.1) или по струне.

Если смещение частиц среды происходит в направлении распространения волны, то волна называется продольной . Волны в упругом стержне (рис. 2.6.2) или звуковые волны в газе являются примерами таких волн.

Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты.

Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

Рисунок 2.6.1.

Распространение поперечного волнового импульса по натянутому резиновому жгуту

Рисунок 2.6.2.

Распространение продольного волнового импульса по упругому стержню

Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют волны, которые способны распространяться и в пустоте (например, световые волны). Для механических волн обязательно нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию. Следовательно, среда должна обладать инертными и упругими свойствами . В реальных средах эти свойства распределены по всему объему. Так, например, любой малый элемент твердого тела обладает массой и упругостью. В простейшей одномерной модели твердое тело можно представить как совокупность шариков и пружинок (рис. 2.6.3).

Рисунок 2.6.3.

Простейшая одномерная модель твердого тела

В этой модели инертные и упругие свойства разделены. Шарики обладают массой , а пружинки – жесткостью . С помощью такой простой модели можно описать распространение продольных и поперечных волн в твердом теле. В продольных волнах шарики испытывают смещения вдоль цепочки, а пружинки растягиваются или сжимаются. Такая деформация называется деформацией растяжения или сжатия (см. §1.12). В жидкостях или газах деформация такого рода сопровождается уплотнением или разрежением .

Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.

Если в одномерной модели твердого тела один или несколько шариков сместить в направлении, перпендикулярном цепочке, то возникнет деформация сдвига . Деформированные при таком смещении пружины будут стремиться возвратить смещенные частицы в положение равновесия. При этом на ближайшие несмещенные частицы будут действовать упругие силы, стремящиеся отклонить их от положения равновесия. В результате вдоль цепочки побежит поперечная волна.

Длина волны Связь длины волны со скоростью ее распространения и периодом Уравнение волны conver

В жидкостях и газах упругая деформация сдвига не возникает. Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появится. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах .

Значительный интерес для практики представляют простые гармонические или синусоидальные волны . Они характеризуются амплитудой колебания частиц, частотой и длиной волны . Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью .

Смещение частиц среды из положения равновесия в синусоидальной волне зависит от координаты на оси , вдоль которой распространяется волна, и от времени по закону:

где – так называемое волновое число , – круговая частота.

На рис. 2.6.4 изображены «моментальные фотографии» поперечной волны в два момента времени: и . За время волна переместилась вдоль оси на расстояние . Такие волны принято называть бегущими (в отличие от стоячих волн, см. далее).

Рисунок 2.6.4.

«Моментальные фотографии» бегущей синусоидальной волны в момент времени и

Длиной волны называют расстояние между двумя соседними точками на оси , колеблющимися в одинаковых фазах. Расстояние, равное длине волны , волна пробегает за период , следовательно, , где – скорость распространения волны.

Для любой выбранной точки на графике волнового процесса (например, для точки на рис. 2.6.4) с течением времени изменяется координата этой точки, а значение выражения не изменяется. Через промежуток времени точка переместится по оси на некоторое расстояние . Следовательно:

Таким образом, бегущая синусоидальная волна обладает двойной периодичностью – во времени и пространстве. Временной период равен периоду колебаний частиц среды, пространственный период равен длине волны . Волновое число является пространственным аналогом круговой частоты

Обратим внимание на то, что уравнение

описывает синусоидальную волну, распространяющуюся в направлении, противоположном направлению оси , со скоростью

В бегущей синусоидальной волне каждая частица среды совершает гармонические колебания с некоторой частотой . Поэтому, как и в случае простого колебательного процесса, средняя потенциальная энергия, запасенная в некотором объеме среды, равна средней кинетической энергии в том же объеме и пропорциональна квадрату амплитуды колебаний.

Отсюда следует, что при распространении бегущей волны возникает поток энергии, пропорциональный скорости волны и квадрату ее амплитуды.

Бегущие волны распространяются в средах с определенными скоростями, зависящими от типа волны, а также от инертных и упругих свойств среды.

Скорость поперечных волн в натянутой струне или резиновом жгуте зависит от погонной массы (т. е. массы единицы длины) и силы натяжения :

Скорость распространения продольных волн в безграничной среде определяется плотностью среды (т. е. массой единицы объема) и модулем всестороннего сжатия , который равен коэффициенту пропорциональности между изменением давления и относительным изменением объема , взятому с обратным знаком:

Выражение для скорости распространения продольных волн в безграничных средах имеет вид

Например, при температуре скорость распространения продольных волн в воде , в различных сортах стали .

При распространении продольных волн в упругих стержнях в формулу для скорости волн вместо модуля всестороннего сжатия входит модуль Юнга (см. §1.12):

Для стали отличие от невелико, для других материалов оно может составлять и даже больше.

Модель. Продольные и поперечные волны

Если механическая волна, распространяющаяся в среде, встречает на своем пути какое-либо препятствие, то она может резко изменить характер своего поведения. Например, на границе раздела двух сред с разными механическими свойствами волна частично отражается, а частично проникает во вторую среду. Волна, бегущая по резиновому жгуту или струне отражается от неподвижно закрепленного конца; при этом появляется волна, бегущая во встречном направлении. В струне, закрепленной на обоих концах, возникают сложные колебания, которые можно рассматривать как результат наложения ( суперпозиции ) двух волн, распространяющихся в противоположных направлениях и испытывающих отражения и переотражения на концах. Колебания струн, закрепленных на обоих концах, создают звуки всех струнных музыкальных инструментов. Очень похожее явление возникает при звучании духовых инструментов, в том числе органных труб.

Если волны, бегущие по струне во встречных направлениях, имеют синусоидальную форму, то при определенных условиях они могут образовать стоячую волну .

Пусть струна длины закреплена так, что один из ее концов находится в точке , а другой – в точке (рис. 2.6.5). В струне создано натяжение .

Рисунок 2.6.5.

Образование стоячей волны в струне, закрепленной на обоих концах

По струне одновременно распространяются в противоположных направлениях две волны одной и той же частоты:

  • – волна, бегущая справа налево;
  • – волна, бегущая слева направо.

В точке (один из закрепленных концов струны) падающая волна в результате отражения порождает волну . При отражении от неподвижно закрепленного конца отраженная волна оказывается в противофазе с падающей. Согласно принципу суперпозиции , который является экспериментальным фактом, колебания, вызванные встречными волнами в каждой точке струны, складываются. Таким образом, результирующее колебание в каждой точке равно сумме колебаний, вызванных волнами 1 и 2 в отдельности. Следовательно,

Это и есть стоячая волна . В стоячей волне существуют неподвижные точки, которые называются узлами . Посередине между узлами находятся точки, которые колеблются с максимальной амплитудой. Эти точки называются пучностями .

Оба неподвижных конца струны должны быть узлами. Приведенная выше формула удовлетворяет этому условию на левом конце (). Для выполнения этого условия и на правом конце (), необходимо чтобы , где – любое целое число. Это означает, что стоячая волна в струне возникает не всегда, а только в том случае, если длина струны равняется целому числу длин полуволн:

Набору значений длин волн соответствует набор возможных частот :

где – скорость распространения поперечных волн по струне. Каждая из частот и связанный с ней тип колебания струны называется нормальной модой . Наименьшая частота называется основной частотой , все остальные () называются гармониками . На рис. 2.6.5 изображена нормальная мода для .

В стоячей волне нет потока энергии. Колебательная энергия, заключенная в отрезке струны между двумя соседними узлами, не транспортируется в другие части струны. В каждом таком отрезке происходит периодическое (дважды за период ) превращение кинетической энергии в потенциальную и обратно как в обычной колебательной системе. Но в отличие от груза на пружине или маятника, у которых имеется единственная собственная частота струна обладает бесконечным числом собственных (резонансных) частот . На рис. 2.6.6 изображены несколько типов стоячих волн в струне, закрепленной на обоих концах.

Рисунок 2.6.6.

Первые пять нормальных мод колебаний струны, закрепленной на обоих концах

В соответствии с принципом суперпозиции стоячие волны различных типов (т. е. с разными значениями ) могут одновременно присутствовать в колебаниях струны.

Волна: продольная и поперечная

Начнем с того, что волна — это распространение колебания в пространстве.

Волны бывают механическими и электромагнитными.

Механические волны — это те волны, колебания которых можно почувствовать физически, потому что они распространяются в упругой среде.

  • Например, звук. Когда звук распространяется внутри какого-либо вещества, мы можем ощутить его прикосновением.

Представьте, что вы стоите на железнодорожных путях. Нет, вы не Анна Каренина, вы — экспериментатор.

Если к вам приближается поезд, вы рано или поздно его услышите. Вернее, услышите, как только звуковая волна со скоростью 𝑣 = 330 м/с достигнет ваших ушей.

Если приложить ухо к рельсу, то это произойдет значительно быстрее, потому что скорость звука в твердом теле больше, чем в воздухе. Кстати, под водой скорость звука больше, чем в воздухе, но меньше, чем в твердых телах.

Если вы когда-нибудь трогали музыкальную колонку, то знаете, что звук чувствуется и на ощупь.

Электромагнитные волны — это те волны, которые мы потрогать не можем.

  • Например, радиоволны, Wi-Fi и свет.

Для них работают все те же самые законы, просто их скорость значительно больше и равна скорости света c = 3 · 10 8 м/с. И источники у них разные.

Волны также принято делить на продольные и поперечные:

продольные и поперечные волны

Продольные — это те волны, у которых колебание происходит вдоль направления распространения волны.

  • Дрожание окон во время грома или сейсмические волны (землетрясения) — это пример продольных волн.

Поперечные — волны, у которых колебание происходит поперек направления распространения волны.

  • Представьте, что вы запустили волну из людей на стадионе — она будет поперечной.
  • Видимый свет и дрожание гитарной струны — тоже поперечные волны.

Морская волна — продольная или поперечная?

На самом деле в ней есть и продольная, и поперечная составляющие, поэтому ее нельзя отнести к конкретному типу.

Длина волны: определение и расчет

Конечно, у любой волны есть характеристики. Одна из таких характеристик — это длина волны.

  • λ — длина волны [м]

Длиной волны называется расстояние между двумя точками этой волны, колеблющимися в одной фазе. Если проще, то это расстояние между двумя «гребнями».

Еще длиной волны можно назвать расстояние, пройденное волной, за один период колебания.

Период — это время, за которое происходит одно колебание. То есть, если дано время распространения волны и количество колебаний, можно рассчитать период.

Формула периода колебания волны

T = t/N

N — количество колебаний [—]

Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.

Выберите идеального репетитора по физике
15 000+ проверенных преподавателей со средним рейтингом 4,8. Учтём ваш график и цель обучения

Выберите идеального репетитора по физике

Скорость и длина волны

Каждая волна распространяется с какой-то скоростью. Под скоростью волны понимают скорость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с.

Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Помимо скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Формула длины волны

Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

где

v — скорость волны; T — период колебаний в волне; λ (греческая буква «ламбда») — длина волны.

Выбрав направление распространения волны за направление оси x и обозначив через y координату колеблющихся в волне частиц, можно построить график волны. График синусоидальной волны (при фиксированном времени t) изображен на рисунке 45. Расстояние между соседними гребнями (или впадинами) на этом графике совпадает с длиной волны λ.
График волны
Формула (22.1) выражает связь длины волны с ее скоростью и периодом. Учитывая, что период колебаний в волне обратно пропорционален частоте, т. е. T = 1/ν, можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:
Формула скорости волны

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.

Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

1. Что понимают под скоростью волны? 2. Что такое длина волны? 3. Как длина волны связана со скоростью и периодом колебаний в волне? 4. Как длина волны связана со скоростью и частотой колебаний в волне? 5. Какие из следующих характеристик волны изменяются при переходе волны из одной среды в другую: а) частота; б) период; в) скорость; г) длина волны?

Экспериментальное задание. Налейте воду в ванну и посредством ритмичных касаний воды пальцем (или линейкой) создайте на ее поверхности волны. Используя разную частоту колебаний (например, касаясь воды один и два раза в секунду), обратите внимание на расстояние между соседними гребнями волн. При какой частоте колебаний длина волны больше?

Типы волн

Все звуковые колебания оснащены постоянной амплитудой, фазой и частотой. Звуки могут проходить абсолютно разные расстояния, а затем передаваться в пространстве в виде неких механических колебаний молекул конкретного вещества. Они распространяются постепенно, а с определенной скоростью, а после мгновенно исчезают. Их скорость непосредственно зависит от среды, в которой они расположены: в жидких и твердых состояниях звуковой процесс простирается лучше и быстрее, чем в воздухе.

Типы волн бывают следующими:

  • бегущая — обуславливается периодом, скоростью и длиной, а также характеризуется распространением фаз в пространственном времени, зависящим от частоты и среды;
  • стоячая – подразумевает суммарность двух волн: отраженной и падающей, для образования которых необходима одинаковая интенсивность волновых процессов;
  • звуковая – характеризуется важным фактором, так как только благодаря этому типу волны люди могут общаться и получать необходимую информацию.

В целом, можно сделать вывод, что причиной всех звуковых процессов являются вибрации, для стабильного распространения звука требуется определенное пространство, источником данного явления выступает тело, имеющее свойство колебаться и вибрировать с правильной, постоянной частотой.

Однако не каждые физические тела, которые перемещаются, могут быть источниками звука. Интересным фактом из истории считается то, что расширение инфразвука на огромные расстояния дает возможность более точно предсказывать стихийные бедствия. А морские животные, такие как раки или медузы, крайне чувствительны к указанным процессам, поэтому способны еще за несколько дней до наступления шторма предвидеть его и спрятаться в безопасное место. Звуки также представляют собой частоту гармонических и абсолютных колебаний.

Волна и ее распространение

Движение – форма существования материи. Одним из широко распространенных в природе движений является колебательное движение, при котором измеряемая величина изменяется не монотонно, а циклически увеличивая и уменьшая свое значение.

Колебания в природе и технике

В протяженных объектах любые изменения (и в том числе колебательные процессы), как правило, происходят не сразу во всем объекте, а сперва начинаются в одной его части, а потом распространяются на остальной объект.

Для наблюдения распространения колебательных движений удобно использовать поверхность воды. В первый момент колеблются только частицы воды непосредственно в месте возникновения волны. Далее происходит распространение колебательного движения. При этом сами частицы воды в горизонтальном направлении не движутся, движется лишь само колебание водной глади.

Распространение волн на поверхности воды

Волна – это колебания среды, распространяющиеся в ней с течением времени.

Параметры волны

Фаза, период и частота

Для распространяющейся волны можно ввести параметр, который называется фазой. Фаза – это одинаковое состояние среды распространения. Для поверхности воды фаза – это величина отклонения от спокойного состояния (от нулевого уровня). Точки волны, находящиеся в одинаковом состоянии, будут находиться в одинаковых фазах. Если записывать в таблицу время, проходящее между одинаковыми фазами какой-то точки, то можно заметить, что это время будет кратно некоторому минимальному значению. Это значение, минимальное время, за которое волна оказывается в одной и той же фазе, называется периодом колебаний $T$ волны. Число периодов за одну секунду называется частотой волны $nu$ (для обозначения используется греческая буква «ню»):

Фазу можно сопоставить с углом на координатной плоскости. Полная волна соответствует углу $2pi$, все фазы повторяются с этим периодом точно так же, как повторяется значение круговых функций (синуса, косинуса и других).

Одному значению отклонения от нулевого значения соответствуют две фазы – одна в момент возрастания, другая – в момент спадания волны (исключение – самый «пик» или самое «дно» волны). Это разные фазы, путать их не следует.

Скорость распространения и длина волны

Поскольку волна распространяется не мгновенно, то, отметив одинаковую фазу волны (движущийся гребень), можно определить скорость этого распространения $v$ относительно неподвижных предметов (например, относительно берега, в случае, когда волна распространяется вдоль него). Для вычисления используется обычная формула скорости – отношение пройденного расстояния к прошедшему времени. Кроме того, можно ввести понятие «длина волны».

Расстояние, которое проходит волна за один период колебания, называется длиной волны, для обозначения используется греческая буква $lambda$ (лямбда). Формула длины волны:

Длина волны

Если известна частота колебаний, для расчета удобнее пользоваться другой формулой (она вытекает из определения частоты):

Слышимый звук представляет из себя колебания плотности воздуха. Распространяется он в нормальных условиях со скоростью, имеющей значения порядка 300-350м/с, и имеет длину волны от ~15мм (самые высокие частоты) до ~15м (самые низкие частоты)

Как зависит скорость распространения волны от ее длины

«Физика — 11 класс»

За один период волна распространяется на расстояние λ.

λ = vT

Длина волны — это расстояние, на которое распространяется волна за время, равное одному периоду колебаний.

Так как период Т и частота v связаны соотношением

При распространении волны:

1. Каждая частица шнура совершает периодические колебания во времени.
В случае гармонических колебаний (по закону синуса или косинуса) частота и амплитуда колебаний частиц одинаковы во всех точках шнура.
Эти колебания различаются только фазами.

2. В каждый момент времени форма волны повторяется через отрезки длиной λ.

Спустя промежуток времени Δt волна будет иметь вид, изображенный на том же рисунке второй линией.

Для продольной волны также справедлива формула, связывающая скорость распространения волны, длину волны и частоту колебаний.

Все волны распространяются с конечной скоростью. Длина волны зависит от скорости ее распространения и частоты колебаний.

Уравнение гармонической бегущей волны

Вывод уравнения волны, позволяющего определить смещение каждой точки среды в любой момент времени при распространении гармонической волны (на примере поперечной волны, бегущей по длинному тонкому резиновому шнуру).

Ось ОХ направлена вдоль шнура.
Начало отсчета — левый конец шнура.
Смещение колеблющейся точки шнура от положения равновесия — s.
Для описания волнового процесса нужно знать смещение каждой точки шнура в любой момент времени:

s = s (х, t).

Конец шнура (точка с координатой х = 0) совершает гармонические колебания с циклической частотой ω.
Колебания этой точки будут происходят по закону:

s = sm sinc ωt

Если начальную фазу колебаний считать равной нулю.
sm — амплитуда колебаний.

Колебания распространяются вдоль оси ОХ со скоростью υ и в произвольную точку с координатой х придут спустя время

Эта точка также начнет совершать гармонические колебания с частотой ω, но с запаздыванием на время τ.

Если пренебречь затуханием волны по мере ее распространения, то колебания в точке х будут происходить с той же амплитудой sm, но с другой фазой:

Это и есть уравнение гармонической бегущей волны, распространяющейся в положительном направлении оси ОХ.

Используя уравнение можно определить смещение различных точек шнура в любой момент времени.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Распространение волн в упругих средах»
Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Механические волны. Физика, учебник для 11 класса — Класс!ная физика

Определение и формула длины волн

Волна — это возмущение, распространяющееся от точки, в которой она возникла, в окружающую среду. Такое возмущение переносит энергию без чистого переноса вещества.

Механические волны

Длина представляет собой фактическое расстояние, пройденное волной, которое не всегда совпадает с расстоянием среды, или частиц, в которых распространяется волна. Ее также определяют как пространственный период волнового процесса. Греческая буква «λ» (лямбда) в физике используется для обозначения длины в уравнениях. Она обратно пропорциональна частоте волны.

Длина волны

Период Т — время завершения полного колебания, единица измерения секунды (с). Длинная волна соответствует низкой частоте, а короткая — высокой. Длина измеряется в метрах. Количество волн, излучаемых в каждую секунду, называется частотой и обратно пропорционально периоду.

702

У различных длин разная скорость распространения. Например, скорость света в воде равна 3/4 от скорости в вакууме. Пространственный период волны — это расстояние, которое точка с постоянной фазой «пролетает» за интервал времени, соответствующий периоду колебаний.

Частота волны

Частота f — количество полных колебаний в единицу времени. Измеряется в Герцах (Гц). При одном полном колебании в секунду f = 1 Гц; при 1000 колебаний в секунду f = 1 килогерц (кГц); 1 млн. колебаний в секунду f = 1 мегагерц (1 МГц). Зная, что скорость света в вакууме с — 300 000 км/с, или 300 000 000 м/с, то для перевода длины волны в частоту нужно 3 х 10 8 м/с поделить на длину в метрах. Единицы измерения длины волны λ — нанометры и ангстремы, где нанометр является миллиардной частью метра (1 м = 109 нм) и ангстрем является десятимиллиардной частью метра (1 м = 1010 А), то есть нанометр эквивалентен 10 ангстрем (1 нм = 10 А).

Оптический спектр

Свет, который исходит от Солнца, является электромагнитным излучением, которое движется со скоростью 300 000 км/с, но длина не одинакова для любого фотона, а колеблется между 400 нм и 700 нм. Длина световой волны влияет на цвет. Белый свет разлагается на спектр различных цветных полос, каждая из которых определяется своей длиной волны. Таким образом, светом с наименьшей длиной является фиолетовый, который составляет около 400 нм, а светом с наибольшей длиной — красный, который составляет около 700 нм. Таблица показывает длину волны в зависимости от цвета:

Длина и цвет волны

Излучения с длиной меньше фиолетового называются ультрафиолетовым излучением, рентгеновским и гамма-лучами в порядке уменьшения. Излучения больше красного называются инфракрасными, микроволнами и радиоволнами, в порядке возрастания. Предельная дальность связи зависит от длины. Размеры антенны часто превышают рабочую длину радиоэлектронного средства. Рисунок показывает длину волн и частоту (нм), исходящих от различных источников:

Длина волн

Примеры расчета длины волны для звуковых, электромагнитных и радиоволн

Задача №1

Скорость звука в воде 1450 м/с. На каком расстоянии находятся ближайшие точки, совершающие колебания в противоположных фазах, если частота колебаний равна 725 Гц?

707

Задача №2

Мимо неподвижного наблюдателя, стоящего на берегу озера, за 6 с. прошло 4 гребня волны. Расстояние между первым и третьим гребнями равно 12 м. Определить период колебания частиц волны, скорость распространения и длину волны.

708

Задача №3

Голосовые связки певца, поющего тенором (высоким мужским голосом), колеблются с частотой от 130 до 520 Гц. Определите максимальную и минимальную длину излучаемой звуковой волны в воздухе. Скорость звука в воздухе 330 м/с.

Оцените статью
TutShema
Добавить комментарий