Как возникает электрическое поле

Электрическое поле – феномен, который изучает классическая электродинамика. Наряду с магнитным и электромагнитным полем термин «электрическое поле» является одним из фундаментальных в современной физической науке. С использованием этого термина и понятия электрического заряда можно описать намного большее количество природных явлений, чем может показаться неосведомлённому в физике человеку.

Электрическим полем называется специфическая разновидность материи, формируемая микротелами, имеющими заряды. Тем не менее, это не только совокупность заряженных тел: данным термином именуется также микрополе, которое формирует в пространстве каждое заряженное тело. Именно совокупность этих микрополей и создаёт электрические поля в привычном для нас понимании.

Существование и непрерывное функционирование электрического поля обусловлено непрерывным взаимодействием частиц, имеющих заряды, в ходе которого они непосредственно сообщают электромагнитную энергию один другому посредством электрических полей, которые окружают каждое из них. Графически электрическое поле следует изображать в виде схематичной совокупности линий, в физической науке именуемых силовыми.

Силовые линии

Благодаря достижениям современной физики мы знаем, что электрические силы объясняют все химические и физические свойства веществ, от атома до животной клетки. Естествоиспытателями, которые заложили фундамент научного знания об электрическом поле, были Андре-Мари Ампер, Майкл Фарадей и Джеймс Клерк Максвелл.

12 недорогих наборов электроники для самостоятельной сборки и пайки

Моя личная подборка конструкторов с Aliexpress «сделай сам» для пайки от простых за 153 до 2500 рублей. Дочке 5 лет — надо приучать к паяльнику))) — пусть пока хотя-бы смотрит — переходи посмотреть, один светодиодный куб чего только стоит

Электрический заряд

Понятие электрического заряда занимает центральное место в классической теории электромагнетизма. Электрическим зарядом в физике называется величина, которая характеризует способность объектов входить в электрические взаимодействия. Следует подчеркнуть, что тела с одноимёнными зарядами всегда отталкиваются, а тела с разноимёнными – притягиваются друг к другу.

Электрический заряд

Фундаментальная характеристика заряда заключается в его двойственной природе: заряды бывают и положительными, и отрицательными. Так, все заряженные тела условно делятся физиками на два подтипа, при этом все тела одного из подтипа отталкивают друг друга, но притягивают тела из второго подтипа. Например, если частица А отталкивает частицу В, но частица А притягивает частицу С, то частица В тоже будет притягивать частицу С.

Физики до сих пор не выяснили, почему тела обладают этим глобальным, универсальным и, при ближайшем рассмотрении, элементарным свойством. Тем не менее, термины «отрицательный заряд» и «положительный заряд» являются противоположными проявлениями одного и того же качества.

Силовые линии электрического поля

Заряженная частица всегда рождается в паре с частицей противоположного заряда. Например, пара положительно и отрицательно заряженных электронов (позитрон и негатрон) появляется на свет посредством распадения фотона. При этом процессе изменения заряда не происходит, другими словами, изменение заряда равно нулю до и после «превращения» фотона.

Чтобы понять, в чём заключается сущность данной скалярной величины и из чего состоит электрическое вещество, следует изучить два фундаментальных свойства электрического заряда: квантование и сохранение заряда.

Принцип квантования заряда

Даже начинающий физик знает: в природе электрические заряды состоят из дискретных зарядов, имеющих постоянную величину, которая характеризуется как заряд электрона и обозначается символом е. Например, положительный заряд позитрона и отрицательный заряд негатрона равны по своей величине. Квантование заряда – это и есть природное уравнивание величин зарядов двух разноимённо заряженных частиц. Важное понятие в терминологии квантования – дискретность заряда. Согласно новейшим физическим теориям, заряд квантуется, то есть обладает свойством дискретности: один заряд состоит из минимальных порций зарядов, которые далее разделить невозможно.

Принцип сохранения заряда

Этот принцип следует из природы «рождения» двух миркотел, имеющих разноимённые заряды. Это фундаментальный эмпирический закон, не имеющий противоречий ни в одном из сделанных до сегодняшнего дня исследований. Дословно принцип сохранения гласит: в закрытой системе электрический заряд, носящий и другое название – алгебраическая сумма двух разноимённых зарядов, –остаётся постоянным.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородное электрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.

Электрический диполь Вихревые поля

Характеристики

Основными характеристиками являются:

  • потенциал;
  • напряжённость;
  • напряжение.

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ =W/q′. называется потенциалом электрического поля в этой точке.

Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией, называется потенциалом рассматриваемого электрического поля в данной точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ∞=0.

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

Линии напряжённости различных полей

  • электростатического;
  • дипольного;
  • системы и одноимённых зарядов;
  • однородного поля.

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Виды электрических полей

Магнитное электрическое поле

Действие такого явления можно наблюдать ежедневно в бытовых условиях. Для этого можно любой диэлектрик потереть о кусок шерсти или пластмассовую расческу о свои волосы. Результатом таких действий станет создание заряда на предметах, а вокруг них появится электрическое поле.

Существуют следующие виды:

  • статическое;
  • индуктированное или вихревое;
  • стационарное;
  • магнитное.

Некоторые свойства у разных видов полей совпадают, но среди них есть и существенные различия. Например, если заряженная частица находится в неподвижном состоянии, то вокруг нее существует только статическое поле. Как только она начнет движение, то сразу появится и магнитное поле. Его сила будет возрастать с увеличением скорости заряда.

Кроме этого, во время движения магнитного появится индуктированное поле. Существует и различия между статическим и стационарным полями. Так, для поддержания стационарного состояния необходимо постоянная затрата некоторой энергии, чего не происходит со статическими полями.

Сферы применения

Некоторые свойства электрического поля позволяют с успехом использовать их в повседневной жизни. Например, оно способно образовывать ионы в жидкости. Погружение электродов в жидкую среду позволяет разделять ее на несколько фракций.

Использование электрического поля в медицине

На основании этих свойств электрическое поле нашло применение в медицине, химии, любых видах очистки. В медицине, например, ионами воздействуют на пораженные места, благодаря чему происходит уничтожение вредных микроорганизмов, попавших в рану, и быстрое их заживление.

Применяются и аппарат, воздействующие электрическим полем на отдельные участки тела, что позволяет точечно повысить в них температуру. В результате гемодинамики улучшается движение крови и ускоряется процесс выздоровления.

Методом использования электрического поля происходит очищение воды в специальных сооружениях, что широко используют организации водоканалов. Под его воздействием в отстойниках производят отделение чистой воды от вредных примесей.

Такой же метод применяется при добыче нефти для удаления загрязненных веществ, мешающих дальнейшей ее обработке. В настоящее время ведутся разработки по использованию электрического поля для беспроводной передачи электроэнергии к различным приборам.

В то же время в некоторых случаях необходимо и защищаться от его воздействия. Особенно широко это применяется в электронике, где встречается необходимость оградить одно поле от воздействий другого.

Оцените статью
TutShema
Добавить комментарий