Как течет ток от плюса к минусу или наоборот

Для большинства людей электрический ток — это что-то из категории магии вне Хогвартса. На самом деле, это всего лишь упорядоченность природных явлений и больше ничего. Давайте переходить в категорию разбирающегося меньшинства.

· Обновлено 31 января 2024

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У зеленого напор сильнее, у желтого — слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

Куда течёт ток?

Куда течёт ток?

В каком направлении течёт электрический ток в электрической цепи? Даже школьнику известно: во внешней цепи от плюса источника энергии к минусу, а внутри источника тока от минуса к плюсу.

Вспомним, однако: электрическим током в физике и электротехнике называется упорядоченное движение электрически заряженных частиц. Таковыми в металлических проводниках могут быть только отрицательно заряженные частицы — электроны, которые во внешней цепи движутся как раз наоборот: от минуса источника к плюсу. Получается, что за направление электрического тока в науке принимают направление противоположное существующему — движению электронов.

Такое парадоксальное положение электротехники как науки можно объяснить, обратившись к истории самой науки.

Среди множества концепций, которыми в старые времена пытались объяснить электрические явления, некоторые сегодня кажутся не вполне научными, но сыграли свою положительную роль.

Одну из них — унитарную теорию электричества — выдвинул американский ученый XVIII века Бенджамен Франклин. Он полагал, что электрическая материя представляет собой невесомую жидкость, которая содержится во всех телах и может вытекать из одних тел и накапливаться в других. Тела становятся наэлектризованными, и когда в них бывает её недостаток — это отрицательная электризация, а когда избыток — положительная. При соединении положительно заряженных тел с отрицательными электрическая жидкость переходит от тела с повышенным количеством жидкости к телам с пониженным количеством — как в сообщающихся сосудах.

Куда течёт ток? Анод. Катод.

Так Франклин ввёл понятия положительного и отрицательного зарядов и их движения, электрического тока, а англичанин Стефан Грэй обнаружил, что существуют такие вещества — металлы — которые проводят электричество от одного тела к другому.

Эти концепции предвосхитили электронную теорию проводимости.

Их современник, французский академик Шарль Франсуа Дюфе считал, что существует два вида электричества, они подчиняются каждое в отдельности теории Франклина, но при соприкосновении нейтрализуют друг друга.

Английский учёный Роберт Симмер, на основании опытов Дюфе и наблюдая за электризацией своих шелковых чулок, впервые в мире обнаружил, что заряжается не только натираемое, но и натирающее тело. То есть при трении тел друг о друга на каждом из них накапливаются заряды одного типа, причём заряды одного знака отталкиваются, а разного знака притягиваются друг к другу и компенсируются при соединении, делая тело нейтральным (незаряженным).

Дуалистическая теория стала основой для разработки ионной теории проводимости газов и растворов — после открытия явления электролиза, при котором были экспериментально установлены два противоположных направления движения зарядов — положительных — от плюса к минусу, и отрицательных — от минуса к плюсу.

В 1820 году датский учёный Ханс Христиан Эрстед открыл, что проводник с током влияет на показания магнитной стрелки, правда, сформулировал его несколько туманно: «полюс, который видит отрицательное электричество входящим над собой, отклоняется к востоку». В целях какой-то определённости в этих знаках и отклонениях член Парижской академии наук Андре-Мари Ампер предложил за основное условно принять направление одного из двух электричеств, а именно — положительное.

Почему он так решил? Возможно, потому, что упомянутый С. Грэй электропроводимость металлов уже установил, а вот обеспечивающий её отрицательно заряженный электрон английский физик Джон Джозеф Томсон открыл только в 1897 г.

Установивший существование электромагнитной индукции — наведение тока в проводнике в изменяющемся магнитном поле — Майкл Фарадей, между тем, писал: «Если я говорю, что ток идет от положительного места к отрицательному, то лишь в согласии с традиционным соглашением, заключённым между учеными — это обеспечивает постоянное ясное и определённое средство для указания направления сил этого тока».

Именно для ясного понимания и лёгкого запоминания физики электромагнитных явлений учёные — они же профессора — придумали мнемонические правила, известные нынешним школьникам и студентам как «правило левой руки» и «правило правой руки», которые, как бы для простоты, не стали отменять и после открытия реального носителя тока — электрона.

И всё бы ничего — но изобрели ещё и электронную лампу, в которой уж точно ток создаётся электронами, летящими из катода к положительно заряженному аноду. А для объяснения физических явлений в полупроводниковых приборах даже придумали виртуальный носитель положительного заряда — «дырку», то есть отсутствие электрона в молекуле, и предпочитают говорить не о направлениях тока, а о направлениях движения электронов и «дырок».

А в электротехнике всё ещё — вот уже полтораста лет — условные положительные заряды условно движутся от плюса к минусу. Можно бы, в интересах истины, поправить учебники, переписать монографии, переучить электриков. Это может вызвать путаницу и неудобства, во всяком случае, на первых порах. Но можно и не поправлять, потому что, как это обосновал американский физик и историк науки Томас Кун, всякое научное знание условно. В астрономии, например, Земля вращается вокруг солнца, а в метеорологии — Солнце вокруг земли. Физики считают законы Ньтона условными — частным случаем созданных ими двух теорий относительности — специальной и общей.

Может, и пусть остаётся как есть: от того, что мы изменим условное направление электрического тока, лампочки ярче не засветятся, мартены не погаснут, телевизоры задом-наперёд показывать не будут?

(Мы-то с вами знаем, куда течёт ток!).

Использована статья Б. Г.?Хасапова «История одного парадокса электротехники»

В КАКОМ НАПРАВЛЕНИИ ТЕЧЕТ ТОК

В каком направлении течет ток – от плюса к минусу или наоборот? И может ли электричество течь в двух направлениях одновременно? Давайте разберемся в этом запутанном вопросе.

В старых книгах про основы электроники любили сравнивать электрический ток с проточной водой. Именно там многие прочитали, что ток течет от плюса к минусу. Позже оказалось, что ток на самом деле течет наоборот, и вообще плюс-минус – это всё условно.

Создателем всей этой неразберихи был американец Бен Франклин – человек, который использовал воздушный змей, чтобы подвести электричество к земле. Он утверждал, что молнии не были признаком гнева богов, а лишь немного более крупными и опасными электрическими искрами. В подтверждение своих слов он решил запустить во время шторма воздушного змея и с его помощью поймать несколько огромных «искр» в банку. В конце концов, всё это дело привело к изобретению громоотвода.

Вскоре после этого Франклин предположил, что электричество имеет две природы, которые они назвали положительной (+) и отрицательной (-). Важно отметить что в то время (около 1750 г.) элементарные частицы еще не были известны, поэтому электричество сравнивали с водой. Итак, если бы у данного объекта было много электричества, он стал бы положительно заряженным. В свою очередь, дефицит был отрицательным. Согласно Франклину, при объединении двух противоположно заряженных объектов «электрическая жидкость» естественным образом перетекает от положительного заряда к отрицательному, как водопад текущий сверху вниз. Эта теория имела смысл и была подтверждена многочисленными экспериментами независимых ученых.

В последующие годы исследования в области электричества получили ускорение. Были открыты способы передачи электричества по проводам, описан феномен электромагнетизма и созданы новые электрические устройства, такие как батарея и лампочка. Учёные понимали электричество все лучше и лучше, и теория электрической жидкости перестала соответствовать этому пониманию. Но последний удар был нанесен примерно через 150 лет, когда был открыт электрон – мельчайшая заряженная частица. Это достижение стало прямым доказательством того, что:

  • Электричество – это не жидкость, а физические частицы, которые несут с собой заряд,
  • Отрицательный заряд – это не «недостаток электрической жидкости», а избыток электронов.
  • Положительный заряд – это не «избыток электрической жидкости», а недостаток электронов.

Соединяя два противоположно заряженных объекта вместе, электроны перескакивают с отрицательно заряженного объекта на положительно заряженный. Электричество течет вопреки предположениям Франклина в другом направлении.

Представьте себе раздражение физиков того времени, когда они обнаружили что тысячи книг и публикаций, написанных за более чем 100 лет, были основаны на неправильном предположении. С одной стороны, все переписать уже невозможно, но после открытия электрона всё-таки не получится делать вид, что направление «от плюса к минусу» было правильным.

Да, возможно электроны перетекают с отрицательного на положительный, но мы все еще не можем видеть эти отдельные частицы. Горит же и обычная лампочка, как бы ее не подключали к батарее. Так есть ли смысл переворачивать мир науки с ног на голову? Может просто согласиться с тем, что электричество течет так, как сейчас? Вроде никто не заметит разницы.

Полезное на сайте:
КАК ПОЛЬЗОВАТЬСЯ ЦИФРОВЫМ МУЛЬТИМЕТРОМ

Когда рассказывалась история Франклина, ни разу не использовался термин «электрический ток». Это потому, что в те времена такой концепции просто не существовало, и потребовалось еще 50 лет упорной работы блестящих умов, чтобы открыть «мобильность заряда». Прорыв произошел только в начале 19 века, благодаря новой области науки под названием электрохимия. Это не только позволило создать непрерывный поток электрического заряда, но и посеяло первое зерно сомнения среди поклонников теории перетекания электричества от плюса к минусу.

Погружение двух разных металлических пластин в раствор кислоты заставляло электричество течь между ними. Но природа этого явления была неизвестна, пока Фарадей не решил изучить его поближе. В ходе эксперимента он заметил, что одна из пластин буквально растворяется у него на глазах, а на другой появляется металлический налет. Текущий заряд вызвал поток вещества, и Фарадей правильно сделал вывод, что поскольку пластины были сделаны из двух разных металлов, в растворе должен был быть поток двух разных зарядов одновременно – отрицательного и положительного, которые он назвал ионами.

Сначала считалось, что «движущееся электричество» полностью отличается от «статического электричества», и эти две области рассматривались отдельно. Но это было только начало проблемы. Следующие годы принесли еще больше интригующих открытий. Изучая поток заряда в проводах, начали замечать взаимосвязь между генерируемым напряжением, размерами проводника и температурой, до которой он нагревается. Возникла идея сопротивления, благодаря которому можно было определить количество протекающего электричества. В свою очередь, физик Эрстед заметил что электричество, протекающее по проводу, мешает работе компаса – так родилась другая, совершенно новая отрасль электротехники – электромагнетизм.

Каждое последующее открытие требовало создания новых математических уравнений и формул. Постепенно стали замечаться взаимосвязи между различными электрическими величинами. Были созданы законы Джоуля, Ома, Кирхгофа и электромагнитной индукции. Поток электричества мог вызвать явления, о которых Франклин даже не предполагал. Исследования становились все более точными, и все открытия приходилось как-то выражать, измерять и сравнивать. В какой-то момент в мире было 4 полностью отдельных системы электрических потоков. Чтобы во всем этом не запутаться, нужно было как-то все это стандартизировать.

Официальное электричество

Между 1881 и 1904 годами было проведено несколько собраний Международного электрического конгресса (МЭК), на котором был установлен ряд общих электромагнитных единиц, таких как ом, вольт, фарад и кулон. Именно в этот период было создано официальное определение электрического тока.

С открытием электрона и ионов все стало ясно, и теория электрической жидкости Франклина была похоронена. Доказано, что электричество состоит из небольших одиночных зарядов, которые могут перемещаться под действием напряжения. И хотя электроны в проводах перетекали с отрицательного на положительный, а ионы в растворах текли в обоих направлениях, все эти частицы имеют одну общую черту – они заряжены одинаковым значением. Благодаря этому не было необходимости создавать несколько разных определений, и все эти явления были связаны одним общим термином: упорядоченный поток электрического заряда или электрический ток.

Единицей измерения электрического тока является ампер, а устройства для измерения тока называются амперметрами. Первый амперметр был в виде серебряной пластинки, которую погружали в раствор нитрата серебра. Под действием протекающего тока серебро выпало из раствора и оседало на пластине. Взвесив пластину до и после ученые определили, что один ампер тока соответствует осаждению 0,001118 грамма серебра в секунду. Это определение изменилось с годами, и сегодня один ампер – это поток заряда и значение одного кулона за одну секунду.

Направление электрического тока

Подключим к пальчиковой батарейке светодиод, и если полярность окажется соблюдена правильно, то он засветится. В каком направлении установится ток? В наше время всем известно, что от плюса к минусу. А внутри батарейки, стало быть, от минуса к плюсу — ток ведь в этой замкнутой электрической цепи постоянный.

За направление тока в цепи принято считать направление движения положительно заряженных частиц, но ведь в металлах то движутся электроны, а они, мы знаем, заряжены отрицательно. Значит в реальности понятие «направление тока» — это условность. Давайте разберемся, почему в то время как электроны текут по цепи от минуса к плюсу, все вокруг говорят, что ток идет от плюса к минусу . Для чего такая несуразность?

Ответ кроется в истории становления электротехники. Когда американский государственный деятель, писатель и физик Бенджамин Франклин разрабатывал свою теорию электричества, он рассматривал его движение подобно движению жидкости, которая как-бы перетекает от одного тела к другому. Где электрической жидкости больше — оттуда она течет в ту сторону, где ее меньше.

Франклин поэтому и назвал тела с избытком электрической жидкости (условно!) положительно электризованными, а тела с недостатком электрической жидкости — отрицательно электризованными. Отсюда и пошло представление о движении электрических зарядов. Положительный заряд перетекает, словно через систему сообщающихся сосудов, от одного заряженного тела к другому.

Позже французский исследователь Шарль Дюфе в своих экспериментах с электризацией натиранием установил, что заряжаются не только натираемые тела, но и натирающие, причем при контакте заряды обеих тел нейтрализуется. Получалось, что есть на самом деле два отдельных вида электрического заряда, которые при взаимодействии друг друга нейтрализуют. Эту теорию двух электричеств развил современник Франклина Роберт Симмер, который на себе убедился в том, что в теории Франклина что-то не до конца правильно.

Шотландский физик Роберт Симмер носил по две пары чулок: утепленные шерстяные и сверху еще вторые шелковые. Когда он снимал с ноги оба чулка сразу, а затем выдергивал один чулок из другого, то наблюдал такую картину: шерстяной и шелковый чулки раздуваются, принимая как бы форму его ноги и резко слипаются друг с другом. При этом чулки из одинакового материла, как шерстяные и шелковые, отталкивались друг от друга.

Если же Симмер держал в одной руке два шелковых, а в другой — два шерстяных чулка, то когда он сближал руки, отталкивание чулков из одинакового материала и притяжение чулков из разного материала приводило к интересному взаимодействию между ними: разнородные чулки словно набрасывались друг на друга и сплетались в клубок.

Наблюдения за поведением собственных чулков привели Роберта Симмера к выводу, что в каждом теле имеется не одна, а две электрические жидкости – положительная и отрицательная, которые содержатся в теле в одинаковых количествах.

При натирании двух тел какая-то из них может перейти из одного тела в другое, тогда в одном теле окажется избыток одной из жидкостей, а в другом – ее недостаток. Оба тела станут наэлектризованными противоположными по знаку электричествами.

Тем не менее, электростатические явления успешно можно было объяснить как при помощи гипотезы Франклина, так и при помощи гипотезы двух электричеств Симмера. Эти теории некоторое время конкурировали между собой.

Когда же в 1779 году Алессандро Вольта создал свой вольтов столб, после чего был исследован электролиз, ученые пришли к однозначному выводу, что действительно в растворах и жидкостях движутся два противоположных потока носителей заряда — положительные и отрицательные. Дуалистическая теория электрического тока, хотя и не была понятна всем, все же восторжествовала.

Наконец, в 1820 году, выступая перед Парижской академией наук, Ампер предлагает выбрать в качестве основного направления тока одно из направлений движения заряда. Ему было удобно сделать так, поскольку Ампер исследовал взаимодействия токов между собой и токов с магнитами. И чтобы каждый раз во время сообщения не упоминать, что в двух направлениях по одному проводнику движутся два потока противоположного заряда.

Ампер предложил просто принять за направление тока направление движения положительного электричества, и все время говорить о направлении тока, имея ввиду движение положительного заряда . С тех пор предложенное Ампером положение о направлении тока принято повсеместно, и используется до сих пор.

Когда Максвелл разрабатывал свою теорию электромагнетизма, и решил применять правило правого винта для удобства определения направления вектора магнитной индукции, он также придерживался этого положения: направление тока — это направление движения положительного заряда.

Фарадей в свою очередь отмечал, что направление тока условно, это просто удобное средство для ученых, чтобы однозначно определять направление тока. Ленц, вводя свое Правило Ленца (смотрите — Основные законы электротехники), также оперировал термином «направление тока», имея ввиду движение положительного электричества. Это просто удобно.

И даже после того как Томсон в 1897 году открыл электрон, условность направления тока все равно сохранилась. Даже если в проводнике или в вакууме реально движутся только электроны, все равно за направление тока принимается противоположное направление — от плюса к минусу.

Простейшая электрическая цепь

Спустя уже более века с момента открытия электрона, несмотря на представления еще Фарадея об ионах, даже с появлением электронных ламп и транзисторов, хотя и появились трудности в описаниях, все равно привычное положение дел сохраняется. Так просто удобнее оперировать с токами, ориентироваться в их магнитных полях, и никаких реальных трудностей это, похоже, ни у кого не вызывает.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Куда течет ток или где же этот чертов катод?

Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

— Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем.

Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «Аткуда» (от Анода) и «Куда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.

Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Всех с 1 апреля! Улыбайтесь, господа. Улыбайтесь!

История одного парадокса электротехники

Если составить электрическую цепь из источника тока, потребителя энергии и соединяющих их проводов, замкнуть ее, то по этой цепи потечет электрический ток. Резонно спросить: «А в каком направлении?» Учебник теоретических основ электротехники дает ответ: «Во внешней цепи ток течет от плюса источника энергии к минусу, а во внутри источника от минуса к плюсу» (1).

Так ли это? Вспомним, что электрическим током называется упорядоченное движение электрически заряженных частиц. Таковыми в металлических проводниках являются отрицательно заряженные частицы – электроны. Но ведь электроны во внешней цепи движутся как раз наоборот от минуса источника к плюсу. Это можно доказать очень просто. Достаточно поставить в вышеуказанную цепь электронную лампу – диод. В случае, если анод лампы будет заряжен положительно, то ток в цепи будет, если же отрицательно, то тока не будет. Напомним, что разноименные заряды притягиваются, а одноименные – отталкиваются. Поэтому положительный анод притягивает отрицательные электроны, но не наоборот. Сделаем вывод, что за направление электрического тока в науке электротехнике принимают направление ПРОТИВОПОЛОЖНОЕ движению электронов. (2)

Выбор направления, противоположный существующему, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники как науки.

Среди множества теорий, иногда даже анекдотичных, пытающихся объяснить электрические явления, появившихся на заре науки об электричестве, остановимся на двух основных.

Американский ученый Б. Франклин выдвинул так называемую унитарную теорию электричества, по которой электрическая материя представляет собой некую невесомую жидкость, которая могла вытекать из одних тел и накапливаться в других. Согласно Франклину, электрическая жидкость содержится во всех телах, а наэлектризованным становится только тогда, когда в них бывает недостаток или избыток электрического флюида. Недостаток флюида означает отрицательную электризацию, избыток – положительную. Так появилось понятие положительного и отрицательного заряда. (3) При соединении положительно заряженных тел с отрицательными электрическая жидкость (флюид) переходит от тела с повышенным количеством жидкости к телам с пониженным количеством. Как в сообщающихся сосудах. С этой же гипотезой в науку вошло понятие движения электрических зарядов – электрического тока. (4)

Гипотеза Франклина оказалась в высшей степени плодотворной и предвосхитила электронную теорию проводимости, Однако она оказалась далеко не безупречной. Дело в том, что французский ученый Дюфе обнаружил, что существует два вида электричества, которые, подчиняясь каждое в отдельности теории Франклина, при соприкосновении нейтрализовывали друг друга. (5). Причиной появления новой дуалистической теории электричества, выдвинутой Симмером на основании опытов Дюфе, была простой. Как это ни поразительно, но на протяжении многих десятилетий экспериментов с электричеством никто не заметил, что при натирании электризуемых тел, заряжается не только натираемое, но и натирающее тело. Иначе гипотеза Симмера просто бы не появилась. Но в том, что она появилась есть своя историческая справедливость. (6)

Дуалистическая теория считала, что в телах обычном состоянии содержатся два рода электрической жидкости в РАЗНЫХ количествах, нейтрализующих друг друга. Электризация объяснялась тем, что соотношение положительных и отрицательных электричеств в телах менялось. Не очень понятно, но надо же было как-то объяснять реально существующие явления.

Обе гипотезы с успехом объясняли основные электростатические явления и долгое время конкурировали друг с другом. Исторически дуалистическая теория предвосхитила ионную теорию проводимости газов и растворов. (7)

Изобретение вольтова столба в 1799 г. и последовавшее за ним открытие явления электролиза позволило сделать выводы о том, что при электролизе жидкостей и растворов в них наблюдается два противоположных направления движения зарядов – положительного и отрицательного. Дуалистическая теория торжествовала, так как при разложении, например, воды наглядно можно было видеть, что на положительном электроде выделяются пузырьки кислорода, а на отрицательном – водорода. (8). Однако и здесь было не все гладко. При разложении воды количество выделяемых газов было неодинаково. Водорода было вдвое больше кислорода. Это ставило в тупик. Как мог бы помочь ученым того времени любой нынешний школьник, знающий, что в молекуле воды на атом кислорода приходится два атома водорода (знаменитое ашдвао) но химики до этого еще не додумались.

Нельзя сказать, что эти теории были понятны не только учащимся, но и самим ученым. Революционный демократ А.И. Герцен, кстати, выпускник физико-математического факультета Московского университета, писал, что эти гипотезы не помогают, а даже «делают страшный вред учащимся, давая им слова вместо понятий, убивая в них вопрос ложным удовлетворением. “Что есть электричество?” – “Hевесомая жидкость”. Не правда ли лучше было бы, если бы ученик отвечал: “Не знаю.”?» (10). Все-таки не прав был Герцен. Ведь в современной терминологии электрический ток ТЕЧЕТ от плюса к минусу источника, а не как-нибудь по другому передвигается и мы нисколько этим не огорчены.

Сотни ученых разных стран проводили тысячи опытов с вольтовым столбом, но только через двадцать лет датским ученым Эрстедом было открыто магнитное действие электрического тока. В 1820 г. было опубликовано его сообщение о том, что проводник с током влияет на показания магнитной стрелки. После многочисленных экспериментов он дает правило, по которому можно определить направление отклонения магнитной стрелки от тока или тока от направления магнитной стрелки. «Мы будем пользоваться формулой: полюс, который видит отрицательное электричество, входящим над собой, отклоняется к востоку». Правило настолько туманное, что современный грамотный человек не сразу и разберется как им воспользоваться, а что же говорить о том времени, когда понятия еще не устоялись.

Поэтому Ампер в труде, представленном Парижской академии наук, сначала решает принять одно из направлений токов за основное, а потом дает правило, по которому можно определить действие магнитов на токи. Читаем: «Так как мне пришлось бы постоянно говорить о двух противоположных направлениях, по которым текут оба электричества, то, во избежание излишних повторений, после слов НАПРАВЛЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА, я буду всякий раз подразумевать ПОЛОЖИТЕЛЬНОГО электричества» Так впервые было введено ныне общепринятое правило направления тока. Ведь до открытия электрона было более семидесяти лет. (11).

В 17-19 веках в Европе получила широкое распространение МНЕМОНИКА. или искусство запоминания, то есть система различных приемов, облегчающих запоминание путем образования искусственных ассоциаций. Например известны стихи для запоминания числа ПИ – «Кто и шутя и скоро пожелаетъ…», которым более ста лет. Или присказку на счет фазанов и охотников для запоминания порядка расположения цветов солнечного спектра.. Это мнемонические правила.

Такое же правило было придумано Ампером для определения направлений сил на проводник с током. Оно называлось «правилом пловца». Мы его не приводим, потому что оно было тоже неудачным и не привилось. Но направление тока во всех правилах подразумевало движение ПОЛОЖИТЕЛЬНО заряженных частиц. (12)

Этого канона придерживался позже и Максвелл, придумавший правило «пробочника» или «буравчика» для определения направления магнитного поля катушки. Оно знакомо каждому школьнику. Однако вопрос об истинном направлении тока оставался открытым. Вот что писал Фарадей: «Если я говорю. что ток идет от положительного места к отрицательному, то лишь в согласии с традиционным, хотя до некоторой степени молчаливым соглашением, заключенным между учеными и обеспечивающим им постоянное ясное и определенное средство для указания направления сил этого тока». (13. Курсив наш. БХ)

После открытия электромагнитной индукции Фарадеем (наведение тока в проводнике в изменяющемся магнитном поле) возникла необходимость для определения направления индуцированного тока. Это правило дал выдающийся русский физик Э.Х.Ленц. (14). Оно гласит: «Если металлический проводник перемещается вблизи тока или магнита, то в нем возникает гальванический ток. Направление этого тока таково, что покоящийся провод пришел бы от него в движение, противоположное действительному перемещению». (15). То есть правило сводилось к такому типу, как «спроси совет и поступи наоборот».

Правила, известные нынешним выпускника школ, как «правило левой руки» и «правило правой руки» в окончательном виде предложил английский физик Флеминг и служат они для ОБЛЕГЧЕНИЯ ЗАПОМИНАНИЯ физического явления физикам, студентам и школьникам, а не для того, чтобы им морочить головы.

Эти правила широко вошли в практику и учебники физики и после открытия электрона очень многое пришлось бы изменять и не только в учебниках, если указывать истинное направление тока. Так и живет эта условность более полутора столетий. Сначала она не вызывала трудностей, но с изобретением электронной лампы (по иронии судьбы первую радиолампу изобрел Флеминг) и широким применением полупроводников начали возникать трудности. Поэтому физики и специалисты по электронике предпочитают говорить не о направлениях электрического тока, а о направлениях движения электронов, или зарядов. Но электротехника по-прежнему оперирует старыми определениями. Иногда это вызывает путаницу. Можно было бы внести коррективы, но не вызовет ли это больше неудобств, чем существующие?

Автор статьи: Хасапов Б. Г.

1. Л.А.Бессонов. Теоретические основы электротехники. М., Высшая школа, 1957, с.8.

2. Н.И.Мансуров, В.С.Попов. Теоретическая электротехника. М., Энергия, 1968, с.46.

3. В.Франклин. Опыты и наблюдения над электричеством. АН СССР, М,. 1956, с.12-13.

4. А.Г.Столетов. Обзор теории электричества. Московские университетские известия. М, 1866, № 1, неоф. отдел. с.26-46..

5. М.И.Радовский. Дюфе – основатель дуалистической теории электричества. «Электричество» № 4, 1938, с.74-79.

6. М.В.Ломоносов. Избранные труды по физике и химии. М., 1961, с.534.

7. В.М.Дуков. Электрон. История открытия и изучения свойств. М., Просвещение, 1966, с. 11-12.

8. А.Азимов. Краткая история химии. М., Мир, 1983. с.66-67.

9. М.Фарадей. Экспериментальные исследования по электричеству. Т.1, М., АН СССР, 1947, с.191.

10. А.И.Герцен. Письма об изучении природы. Соч. в 9 томах. т.2. М., худож. лит. 1955, с.102.

11. А.М.Ампер. Электродинамика. М., АН СССР, 1954, с.229.

12. О.Д.Хвольсон. Курс физики. т.4., Берлин, Госиздат РСФР, 1923, С.491.

13. М.Фарадей. с.269.

14. Э.Х.Ленц. Избранные труды. М., АН СССР., 1950, с.147-157.

  • Эффект Бифельда-Брауна и другие электромагнитогравитационные эффекты
  • Загадки скрещенных токов — Эффект Холла
  • Все самое интересное о поездах на магнитном подвесе

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Интересные факты, Научные статьи

Подписывайтесь на наш канал в Telegram: Домашняя электрика

Поделитесь этой статьей с друзьями:

Направление электрического тока в проводниках

Исторически сложилось так, что направление протекание электрического тока принято от «плюса» к «минусу», то есть от положительного к отрицательному электроду источника питания. На самом деле, если рассматривать металлический проводник, то электроны, являющиеся единственными носителями заряда, движутся от отрицательного электрода к положительном. Следовательно действительное направления тока противоположно принятому.

Направление электрического тока

Такое направление предложил Бенджамин Франклин ввиду отсутствия знаний того времени о природе носителей электрического заряда в проводниках. Портрет Бенджамина Франклина изображен на сто долларовой купюре.

Направление электрического тока в газах и жидкостях

Электроника для начинающих

В газах и жидкостях электрический ток может протекать от плюса к минусу, согласно традиционному представлению, поскольку в них может преобладать количество положительных ионов. Направление не стали изменять на «правильное», поскольку оно слишком плотно вошло в обиход.

Электрический ток

Электричество

Постоянный и переменный ток преимущества и недостатки

4 комментария
Даниил Епифанцев

Значит ли это, что у батарейки в той части где стоит + на самом деле отрицательные частице, а где минус положительные? 10.04.2020 Ответить

Конечно же нет. + батарейки это положительно заряженные ионы, а «минус» отрицательно заряженные ионы. Посмотри хорошо первое видео «Что такое электричество и как оно возникает.» 16.10.2020 Ответить

не путайте ион(положительный) с дыркой и ион(отрицательный) с электроном. Это абсолютно разные вещи. 18.11.2021 Ответить

Уважаемые комментаторы, сначала разберитесь в природе явления, потом отвечайте на вопрос.
Химические реакции с участием ионов в батарейке проходят на уровне внутренних (закрытых от внешней среды) элементов, в результате этих химических реакций поддерживается ЭДС батарейки, значит на положительном полюсе батарейки поддерживается повышенное количество электронов. Соответственно по цепи протекает электрический ток состоящий из отрицательных элементов электронов а не ионов, так как ион это атом со смещенным зарядом. Этот заряд в ионе появляется в результате потери электрона, тогда в ядре будет больше протонов чем электронов на орбите — это положительный ион. Если в атоме электронов на орбите электронов больше чем протонов в ядре — то это отрицательный ион. Но атомы не перемещаются по классическому металлическому проводнику где присутствует кристаллическая решетка. В таком проводнике перемещаются только электроны. Ионы как носители заряда могут присутствовать в электрической цепи имеющей элементы основанные на жидкостях или газах.
Полюса батарейки — это обычный металл, и плюсовой контакт батарейки насыщен обычными электронами которых больше чем на минусовом контакте. соответственно если создать замкнутую цепь то с плюсового контакта батарейки электроны будут перемещаться по проводнику к минусовому контакту этой батарейки. Значит когда мы говорим плюс у батарейки в классическом смысле это электроны с минусовым зарядом. Но благодаря Франклину, по привычке рассматриваем электрическую цепь где плюс идет к минусу. 04.04.2023 Ответить

Оцените статью
TutShema
Добавить комментарий