Как проверить электролитический конденсатор мультиметром на работоспособность

Содержание

Как проверить конденсатор мультиметром на работоспособность не выпаивая: возможные поломки, пошаговая инструкция

Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов.

При диагностике или ремонте различной техники может возникнуть следующий вопрос – как проверить конденсатор мультиметром на работоспособность? При этом внешний осмотр не во всех случаях позволяет определить функциональность конденсатора, поэтому требуется проверка прибором. Сегодня мы подробнее рассмотрим этот процесс, а также расскажем о принципе функционирования конденсаторов и распространенных причинах их неисправностей.

Проверка мультиметром

Что такое конденсатор?

Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Этот прибор составляет большое количество различных электросхем. Принцип функционирования сводится к поэтапному накоплению электроэнергии с различным потенциалом между обкладками и последующим быстрым разрядом.

Существует большое количество конденсаторов, которые отличаются между собой по габаритам и другим параметрам

Выделяют два наиболее известных типа конденсаторов, которые устанавливаются в современных схемах:

  1. Полярные (электролитические). Такое название они получили потому, что при подключении в схему требуется задать определенную полярность: «плюс» к «плюсу», а «минус» к «минусу».
  2. Неполярные. К этой группе относятся любые другие варианты конденсаторов.

Общепринятое обозначение этого элемента на схемах отчетливо показывает его принцип работы.

Расположенные на расстоянии обкладки (пластинки) обладают свойством накопления зарядов

Строение этого электронного компонента простое – он состоит из двух покрытых изоляционным слоем обкладок, которые проводят ток. С целью изоляции используют всевозможные материалы и компоненты, которые не проводят электричество: кислород, пластинки из керамики, специальную целлюлозу, фольгу.

По внешнему виду такие элементы отличаются миниатюрным размером при внушительной емкости, поэтому в процессе работы с ними следует соблюдать технику безопасности.

Принцип функционирования

Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов. Это необходимо только в тех схемах, где происходит распределение составляющих тока (переменный ток). В то время как в схемах с постоянным током конденсатор не сможет накапливать энергию.

КАК ПРОВЕРИТЬ КОНДЕНСАТОР МУЛЬТИМЕТРОМ

Где применяется?

Устанавливают конденсаторы различных видов в радиосхемы и бытовые приборы. Как правило, эти устройства имеют небольшую емкость, поэтому их неисправность не провоцирует тяжелых последствий.

Конденсаторы имеются в электросхемах различных приборов

Крупногабаритные конденсаторы составляют различные электрические двигатели, где являются элементами пуска. В данном случае они отличаются большим номиналом и такой же емкостью.

Цены на различные виды конденсаторов

Конденсаторы

Видео – Для чего нужен конденсатор?

Основные виды конденсаторов

Производители предлагают широкий выбор этих элементов, что позволяет выбрать вариант для решения конкретной технической задачи. Некоторые типы этих устройств по назначению:

  • Высоковольтные конденсаторы. Устанавливаются в высоковольтном оборудовании. По исполнению могут быть керамическими, масляными, вакуумными. Доступ к ним ограничен.
  • Пусковые. Устанавливаются в электрических двигателях, повышают их стартовый момент.
  • Подстроечные конденсаторы. Это переменные устройства, изменяющие емкость при перемещении подвижного элемента относительно неподвижного.
  • Импульсные. Позволяют создавать пики напряжения с их передачей на принимающую панель прибора.
  • Помехоподавляющие. Служат для удерживания частот в установленных пределах, обеспечивают стабильное функционирование чувствительных аппаратов.

Конденсатор БМТ-2 400ВЧип конденсатор подстроечный

В конструкции конденсаторов могут присутствовать жидкие, твердые (бумажные, пленочные, керамические), комбинированные (металлобумажные, стеклоэмалевые, стеклопленочные, стеклокерамические, оксидно-полупроводниковые) диэлектрики.

Типичные неисправности конденсаторов

  • Короткое замыкание между обкладками. Возникает из-за ударов, перегревов, пробоя, который происходит при превышении допустимого напряжения. Это самый легкий случай, который можно установить с использованием мультиметра в режиме прозвонки.
  • Внутренний обрыв, при котором деталь полностью теряет емкость. Определить этот дефект в моделях большой емкости (более 500 пФ) достаточно просто. В случае мелких конденсаторов придется использовать специальные приборы.
  • Частичная утрата емкости. Электролитические устройства при эксплуатации постепенно утрачивают емкость. Эта особенность приводит к ухудшению характеристик элементов. Конденсаторы с твердыми диэлектриками в этом плане проявляют большую стабильность, но могут потерять часть емкости из-за резких ударов или других воздействий.
  • Пониженное сопротивление утечки. Случаи, когда элемент перестает удерживать заряд, чаще всего происходят с электролитическими и танталовыми конденсаторами

Конденсатор К52-5С 90В 68мкФ +-10%

Причинами выхода из строя этих элементов обычно являются повышение напряжения сверх установленного предела, повреждения механического характера, в устаревших аппаратах – естественный износ.

Проверка конденсаторов с помощью омметра.

Самым доступным и распространённым прибором, с помощью которого можно провести тестирование конденсатора, является цифровой мультиметр, включенный в режим омметра.

Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальном конденсаторе диэлектрик, несмотря на то, что он является изолятором, всё-таки пропускает незначительный ток. Обычно, этот ток очень мал и не учитывается. Он называется током утечки.

Данный способ подходит для проверки неполярных конденсаторов. У них сопротивление утечки бесконечно большое и, если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое значение.

Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.

На практике проверить на пробой любой неполярный конденсатор можно так:

Переключаем мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов. Для цифровых мультитестеров серий DT-83x, MAS83x, M83x, это будет предел 2M (2000k), то бишь, 2 мегаома.

Далее подключаем измерительные щупы к выводам проверяемого конденсатора. Если он исправен, то прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки более 2 мегаом.

Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, которое меньше 2 мегаом, то, скорее всего, конденсатор имеет большую утечку.

Следует учесть, что держаться обеими руками выводов конденсатора и металлических щупов мультиметра при измерении нельзя! В таком случае прибор зафиксирует сопротивление вашего тела, а не сопротивление конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Результат измерения будет некорректный. Об этом простом правиле стоит помнить при проверке и других радиодеталей.

Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.

Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 килоОм. Для более качественных конденсаторов это значение составляет не менее 1 мегаома.

При проверке таких конденсаторов омметром следует сначала их разрядить, замкнув выводы накоротко. Если этого не сделать, то есть риск сжечь мультиметр.

Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки.

Так как электролитический конденсатор имеют довольно большую емкость, то при проверке он начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти – показания на нём будут увеличиваться. Это будет продолжаться до тех пор, пока конденсатор полностью не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности проверяемого элемента.

Одной из рядовых неисправностей электролитических конденсаторов является частичная потеря ёмкости. В таких случаях его ёмкость заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра сложно. Я бы сказал, что невозможно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.

Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв.

Для полярных электролитических конденсаторов косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления.

Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор имеет очень высокое сопротивление. Заряд ёмкости такого конденсатора проходит очень быстро и из-за этого невозможно определить имеет ли конденсатор хоть какую-то ёмкость. На дисплее мультиметра показания меняться не будут, как это происходит при заряде ёмкого электролитического конденсатора.

Как вы уже поняли, обнаружить обрыв в неполярном конденсаторе можно лишь с помощью прибора для измерения ёмкости.

На практике обрыв в конденсаторах встречается довольно редко, в основном такое бывает при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.

Проверка конденсатора стрелочным омметром.

Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась похожим образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелкой прибора, росло. В конечном итоге величина его достигала значения сопротивления утечки.

По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали и емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем, соответственно, была больше ёмкость. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости, а вот при проверке конденсаторов с ёмкостью от 1000 мкф и более, стрелка отклонялась значительно медленнее.

Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения электрической ёмкости.

Способ 3: Использование простого вольтметра для проверки конденсатора

Использование простого вольтметра для проверки конденсатора

  1. Запишите максимально допустимое напряжение на конденсаторе (2,5 В в случае конденсатора на картинке выше).
  2. Зарядите конденсатор до напряжения, меньшего, чем максимально допустимое напряжение источника напряжения (например, 1 Вольт в случае конденсатора, показанного на картинке). Обязательно подключите положительный вывод батареи к более длинному выводу конденсатора, а отрицательный — к более короткому.
  3. Подключите выводы конденсатора к щупам мультиметра (положительный вывод к красному щупу, а отрицательный — к черному, соответственно).
  4. Перемещая ручку мультиметра, выберите диапазон постоянного напряжения. Если отображаемое значение совпадает с напряжением, при котором заряжается конденсатор, то конденсатор исправен, в противном случае он неисправен.
  5. Измерения необходимо проводить быстро, иначе конденсатор начнет разряжаться, что даст неверные показания мультиметра.

Способ 4: Используйте режим непрерывности мультиметра для проверки конденсатора

Как проверить конденсатор мультиметром

  1. Выньте проверяемый конденсатор из электрической цепи.
  2. Полностью разрядите конденсатор, подключив его к резистору, а затем извлеките конденсатор, чтобы его прозвонить тестером.
  3. Подключите выводы конденсатора к щупам мультиметра (положительный вывод к красному щупу, а отрицательный — к черному соответственно).
  4. Поверните ручку мультиметра и выберите опцию проверки непрерывности (выберите символ распространяющейся волны).
  5. Если мультиметр издает непрерывный звуковой сигнал (или загорается светодиод), значит, в конденсаторе имеется КЗ.
  6. Если счетчик не издает звукового сигнала, конденсатор разомкнут.
  7. Если измерительный прибор сначала издает звуковой сигнал (или загорается светодиод), а затем постепенно прекращает его, значит, конденсатор находится в хорошем состоянии.

Что нужно знать для проверки конденсатора мультиметром

Специалисты знают, что в электротехнике бывают всего две неисправности: есть контакт там, где не надо, и нет контакта там, где это надо. А вот в электронике есть ещё изменение характеристик элементов. Так вот, у конденсатора периодически бывает изменение характеристик, а мультиметр – это прибор, с помощью которого эти неприятности можно обнаружить и даже измерить.

Устройство и принцип работы мультиметра

Лет 25 назад этот прибор был довольно солидных размеров и назывался тестер. С его помощью проводили тестирование (испытания, проверку) электрической цепи на предмет поиска обрыва или ненужного замыкания. Состоял он из гальванометра и набора катушек-сопротивлений с переключателем. Последний позволял выбрать режим измерений – силу тока, величину напряжения или сопротивление цепи.

Современный мультиметр в соответствии со своим названием способен на многочисленные измерения и проверки. Кроме вышеназванных, с его помощью можно проверить работоспособность диодов и транзисторов, а также конденсаторов. Вместо стрелочного гальванометра у него цифровой дисплей, а габаритные размеры и вес стали значительно меньше, чем у старого тестера. Во всех мультиметрах устанавливается 9-вольтовый источник питания типа «Крона».

Как проверить конденсатор мультиметромАналоговый стрелочный тестер

Особенности конденсаторов в зависимости от вида

Конденсатор – это элемент, способный накапливать электрический заряд. В общем виде он состоит из двух токопроводящих пластин, разделённых диэлектриком (непроводящим материалом). Величина накапливаемого заряда зависит от площади этих пластин и от природы диэлектрика. Свойство накапливать заряд называется ёмкость конденсатора. Основной единицей измерения величины ёмкости является фарад — накопленный заряд в 1 Кулон при напряжении на обкладках 1 Вольт. На практике применяются более мелкие единицы измерения. Они в тысячу, в миллион и в миллиард раз меньше фарада.

Многообразие видов конденсаторов

Конструирование конденсаторов имеет своей целью повышение ёмкости без увеличения внешних габаритов. В этом причина использования различных материалов для пластин и диэлектриков, а также появление множества видов этого прибора. Для увеличения площади токопроводящих пластин, их изготавливают в виде длинной полипропиленовой металлизированной ленты, свёрнутой в виде цилиндра или сложенной гармошкой с прослойкой ленты диэлектрика. Конденсаторы металлобумажные, бумажные, серебряно-слюдяные и слюдяные устроены именно таким образом.

Серебряно-слюдяные конденсаторы

По типу диэлектрика различается несколько типов конденсаторов – вакуумные, с газообразным, неорганическим, органическим диэлектриком, электролитические, твердотельные.

Главный отличительный признак у конденсаторов – наличие свойства полярности. У полярных строго определена обкладка, имеющая знак «+», и обкладка, имеющая знак «-». Это обязательно учитывается в схеме их применения и при проверках.

Электролитические конденсаторы являются характерным представителем класса полярных. Они изготовлены в виде алюминиевого цилиндра, в котором свободное пространство между обкладками заполнено электролитом. Эти конденсаторы имеют объёмы от очень маленьких, от долей кубического сантиметра до очень больших – нескольких десятков см³ , и большие ёмкости – до тысяч микрофарад, то есть, единиц миллифарад.

Электролитические полярные конденсаторы

Танталовые полярные конденсаторы при малых габаритах имеют высокую ёмкость, но и стоят значительно дороже.

Танталовые полярные конденсаторы – миниатюрные «капельки» с весьма внушительными показателями ёмкости

Керамические конденсаторы представляют класс неполярных. Они компактны, работают в широком диапазоне напряжений, имеют высокую надёжность и низкую цену.

Неполярные керамические конденсаторы

Проверка конденсатора мультиметром

Существует много разных видов неисправностей конденсаторов. Электрический пробой, вызванный повышенным напряжением, замыкание участка цепи, обрыв из-за механических воздействий, утечка, которая обусловлена изменением сопротивления между обкладками. При всех этих обстоятельствах конденсатор теряет свою ёмкость. В электролитических устройствах причиной этого может быть изменение свойств электролита, его высыхание. Причиной любой неисправности может быть и производственный брак.

Проверка конденсатора начинается с визуальной оценки его внешнего вида. Существуют наружные признаки электрического пробоя, например, потемнение, вздутие, прогорание или растрескивание керамического корпуса.

Подготовительные работы

К подготовительным работам можно отнести две обязательные процедуры: конденсатор нужно разрядить, а если он установлен на плате – то необходимо его выпаять. Ещё нужно определить, относится ли данный экземпляр к полярным или неполярным. Знак «-» обозначен на корпусе рядом с соответствующим выводом. Полярность надо соблюдать при всех операциях. В неполярном конденсаторе соблюдать плюс и минус не обязательно.

Если внешних повреждений не обнаружено, то дальнейшие проверки ведутся с применением мультиметра.

Разрядка конденсатора

Конденсатор предназначен для накопления электрического заряда. Все измерения надо проводить с разряженным изделием. Простейший и надёжный вариант разрядки – замыкание его выводов отвёрткой до появления искры. Но если схема работает под высоким напряжением, то следует соблюдать осторожность. Руки должны быть в резиновых перчатках, а глаза защищены очками. Далее можно производить «прозвонку».

Подключения прибора к полярному и неполярному конденсатору

Если конденсатор полярный, то плюсовой щуп измерительного прибора всегда подключается к плюсу конденсатора. Для неполярного это правило можно не соблюдать.

Как проверить конденсаторы мультиметром

Для проверки конденсаторов подходит абсолютно любой мультиметр, даже самый обычный. Можно использовать как аналоговый прибор, так и цифровой. Кстати, в некоторых мультиметрах уже предусмотрено гнездо для проверки конденсаторов. Остается лишь вставить ножки конденсатора в определенные разъёмы и включить мультиметр в работу.

Как проверить конденсаторы мультиметром

Что же касается проверки конденсаторов обычным мультиметром, цифровым или аналоговым, то, принцип измерения заключается в другом. Для проверки конденсаторов потребуется переключить мультиметр в режим измерения сопротивления. Данный режим обозначен на мультиметре вот таким значком (Ω). Данная единица измерения была названа в честь Георга Симона Ома.

Важно! Мультиметр нужно выставить в режим измерения сопротивления на самый высокий предел. Только после этого можно приступать к проверке конденсатора мультиметром.

Для этого сначала нужно подсоединить щупы мультиметра к выводам конденсатора, после чего включить прибор. Если конденсатор исправен, то на экране мультиметра побегут цифры. Потом, дойдя до определенного порога, цифры исчезнут, что будет означать одно — конденсатор зарядился от источника питания мультиметра.

Предел, до которого будут бежать цифры, зависят от емкости конденсатора.

Как проверить конденсаторы мультиметром

При проверке конденсатора мультиметром может оказаться так, что на экране прибора не появится никак цифр или отобразится цифра 1. В таком случае это будет означать, что конденсатор пробит, и он не набирает емкость.

Меры предосторожности при проверке конденсаторов

Всё просто, и как было сказано выше, на сайте https://samelektrikinfo.ru/, полностью рабочий конденсатор начинает набирать емкость, то есть, заряжаться от батарейки мультиметра. Конечно же, важно соблюдать и определенные меры предосторожности, поскольку конденсаторы бывают разные.

Меры предосторожности при проверке конденсаторов

Например, таким образом, не желательно проверять конденсаторы, которые могут иметь высокий заряд. Конденсатор может сохранять достаточно высокий заряд долгое время, который может стать причиной поражения электрическим током.

Также, при проверке конденсаторной емкости мультиметром, желательно разрядить конденсатор до нуля. При этом замыкать вывода конденсатора отвёрткой или гвоздём не желательно, так как это может стать причиной его выхода из строя и повреждения внутри.

Внимание! Для разрядки конденсатора к нему нужно подсоединить простейшую нагрузку, например, лампочку.

Теперь вы знаете, как проверить конденсаторы мультиметром. Конечно же, такая проверка оказывается самой простейшей из всех, но это хоть что-то, если нет под рукой ничего, кроме цифрового или аналогового мультиметра.

Как проверить конденсаторы мультиметром на плате и отдельно

Возможно, вы знаете и другие способы проверки конденсаторов без специальных устройств. Делитесь ими в комментариях.

Оцените статью
TutShema
Добавить комментарий