Как определяется ток при коротком замыкании зажимов источника энергии

Вопрос по физике:

Чему равен ток при коротком замыкании зажимов источника энергии?

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

  • bookmark_border
  • 10.11.2017 01:33
  • Физика
  • remove_red_eye 9095
  • thumb_up 23
Ответы и объяснения 2

По закону Ома ток нагрузки определяется выходным напряжением, деленным на сопротивление короткого замыкания плюс выходное сопротивление источника. При малом выходном сопротивлении источника ток может достигнуть больших величин. Этот ток сможет привести к необратимым изменениям (сгорание, изменение режимов и параметров) , и нормальная работа источника нарушится.

  • 11.11.2017 09:00
  • thumb_up 40

Токи короткого замыкания в сетях постоянного тока промышленных предприятий

Электроустановки постоянного тока являются важной составной частью системы электроснабжения различных типов потребителей промышленных предприятий. От электроустановок постоянного тока зависит функционирование цепей управления, защиты, контроля и регулирования основного оборудования электрических станций и подстанций, устройств сигнализации и связи.

Электроустановки постоянного тока являются, как правило, независимыми от электроэнергетических систем источниками энергии и имеют различное назначение. Электроустановка постоянного тока может состоять из одной или нескольких аккумуляторных батарей, преобразователей энергии переменного тока в постоянный, машин постоянного тока и соответствующего распределительного устройства.

Расчет токов короткого замыкания в электроустановках постоянного тока в начальный и произвольный моменты времени необходим для выбора электрооборудования и проверки его по условиям короткого замыкания, выбора уставок и оценки действия защит и автоматики, для расчета заземляющих устройств. Расчет производится для условий замыкания полюсов сети постоянного тока, а также при замыкании полюса на землю (корпус) заземленной сети.

Величины, подлежащие определению, и допустимая погрешность определяются целями расчета. Для выбора электрооборудования допускаются приближенные методы расчета. При этом определению подлежат:

  • • значение тока короткого замыкания в произвольный момент времени;
  • • максимальное значение тока короткого замыкания;
  • • ударный ток короткого замыкания вентильных преобразователей (при трех- и двухфазных коротких замыканиях в вентильных обмотках преобразовательных трансформаторов);
  • • максимальное значение установившегося тока короткого замыкания в цепях постоянного тока вентильных преобразователей;
  • • минимальное значение установившегося тока короткого замыкания в цепях постоянного тока вентильных преобразователей.

Электрооборудование установок постоянного тока в схемах замещения, соответствующих расчетным схемам, учитывают линейными элементами с сосредоточенными параметрами, за исключением электрической дуги и внутреннего сопротивления аккумуляторных батарей.

Физика Сила тока при коротком замыкании источника равна 1,5 А. При замыкании источника тока на

Расчет тока короткого замыкания в электроустановках, получающих питание от аккумуляторных батарей. При составлении схемы замещения для расчетов тока короткого замыкания в электроустановках, получающих питание от аккумуляторных батарей, допускается не учитывать индуктивные сопротивления элементов. Внешнее сопротивление цепи короткого замыкания (сопротивление между аккумуляторной батареей и местом короткого замыкания) Явн в общем случае равно

где Яош = ^ ош — сопротивление ошиновки аккумуляторного помеще-

ния; р — удельное сопротивление материала шин; s0IU, 10Ш — сечение и длина шин; Якб, Rnp — активное сопротивление кабелей и проводов; RT K _ сопротивления токовых катушек отключающих аппаратов; jRn.K — переходное сопротивление контактов; Яэк = 5 мОм — активное сопротивление элементного коммутатора (если он используется);

Рпл.пр = 2—внутреннее сопротивление плавкого предохранителя;

АР — максимально допустимые потери активной мощности в предохранителе; I — номинальный ток плавкой вставки.

Ток в начальный момент металлического короткого замыкания равен

где Еа б — ЭДС аккумуляторной батареи.

Для расчета тока в начальный момент дугового короткого замыкания используется формула

При проведении уточненных расчетов учитывается собственная индуктивность аккумуляторов, индуктивность межаккумуляторных соединений и проводников, соединяющих аккумуляторную батарею с распределительным щитом. Следует учитывать также, что значение внутреннего сопротивления аккумулятора зависит от степени его заря- женности и температуры окружающей среды.

Расчет тока короткого замыкания на стороне выпрямленного тока полупроводниковых преобразовательных агрегатов рассмотрим на следующем примере.

Расчетная схема и схема замещения преобразовательного агрегата приведена на рис. 15.4.

Расчетная схема к примеру 15.2

Рис. 15.4. Расчетная схема к примеру 15.2

Мощность питающей системы Sc= 157 МВ • А, напряжение сети Uc = 6 кВ, напряжение на стороне выпрямленного тока Ud = 440 В; ток — Id = 2000 А; трансформатор: ST= 1210 кВ • A, UB= 6 кВ; фазное напряжение вторичной обмотки U2ф = 440 В, ик = 6,6%, АРК = 20 кВт.

Решение. U6 = 440 В. Индуктивные и активные сопротивления элементов расчетной схемы составляют:

Индуктивное и активное сопротивления четырех работающих параллельно трансформаторов: хТ4 = 0,008 Ом, гТ4=0,0066 Ом.

Активное переходное сопротивление Rn = 0,015 Ом.

Суммарные индуктивное и активное сопротивления до точки короткого замыкания

Ток короткого замыкания для схемы преобразователя «две обратные звезды с уравнительным реактором» определяется следующим образом:

Для мостовой схемы:

Максимальное значение установившегося тока вычисляется по формуле

“ 2 J н —коэффициент отношения потерь напряжения в преоб-

разовательном агрегате AU при его номинальной нагрузке 1Н к номинальному выпрямленному напряжению UH; N — число работающих преобразовательных агрегатов.

3.Контрольные вопросы.

1.Ознакомится с порядком выполнения лабораторной работы №2, краткими теоретическими сведениями по данной теме. Подготовить в рабочей тетради «Лабораторно–практические работы по электротехнике» протокол испытаний.

2. Собрать электрическую цепь в соответствии с рис 2.1. В качестве измерительных приборов используйте мультиметры или виртуальные приборы с коннектором.

3. После проверки схемы преподавателем установить параметры для данной цепи (U,R1,R2,R3), по указанию в таб. 2.1.и снять показания амперметра.

4.Заполнить таблицу 3.1., построить график рис.2.2. в выбранном масштабе, зависимости U(I) при трёх значениях сопротивления.

5.Произвести новые замеры имеющие место при напряжениях соответственно 4 В, 8 В и 12 В, в зависимости от сопротивлений, указанных в табл.2.3 и снять показания амперметра.

6. Заполнить таблицу 2.3., построить график рис.2.4. в выбранном масштабе, семейства зависимостей кривых I = f(R).

7. Составить полный отчет по работе, сформулировать выводы по работе.

8.Ознакомиться с контрольными вопросами для защиты лабораторной работы.

Ток короткого замыкания, от чего зависит величина тока КЗ

В данной статье речь пойдет о коротком замыкании в электрических сетях. Мы рассмотрим типичные примеры коротких замыканий, способы расчетов токов короткого замыкания, обратим внимание на связь индуктивного сопротивления и номинальной мощности трансформаторов при расчете токов короткого замыкания, а также приведем конкретные несложные формулы для этих вычислений.

Ток короткого замыкания, от чего зависит величина тока КЗ

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, устройств селективной защиты и т. п.

Что такое короткое замыкание

Короткое замыкание (КЗ) — внезапное уменьшение сопротивления электрической цепи до очень малого значения, чаще всего возникающее в результате соединения проводов электрической цепи или повреждения электрической изоляции в результате её пробоя. Ток короткого замыкания во много раз превышает рабочий ток и может привести к повреждению электрических кабелей и электротехнических устройств или стать причиной пожара.

Короткое замыкание – это непредвиденное при данных условиях эксплуатации прямое или относительно низкоомное соединение точек энергосистемы с разными потенциалами или одной или нескольких таких точек с землей.

Причины коротких замыканий в электроустановках можно разделить на:

  • электрические (например, атмосферные перенапряжения, коммутационные перенапряжения, длительные перегрузки по току),
  • неэлектрические (например, сырая изоляция машин, кабелей, обрыв и падение проводов ВЛ, механические повреждения проводов, изоляторов или кабелей, неосторожность и недомыслие человека).

С учетом значений токов КЗ, протекающих по отдельным фазам трехфазной сети электроснабжения, КЗ можно разделить на:

  • симметричный – при котором все фазы симметрично нагружены одинаковым током короткого замыкания. Это трехфазные замыкания с землей и без нее,
  • несимметричный – в котором фазы несимметрично нагружены током короткого замыкания.

К этим типам неисправностей относятся различные типы двух- и однофазных неисправностей, возникающих в различных системах сетей низкого напряжения.

Для чего нужны расчеты КЗ

Расчеты тока короткого замыкания проводятся для того, чтобы:

  • выбрать электрические устройства, исходя из требуемой прочности на короткое замыкание и коммутационной способности,
  • провести правильный выбор или проверку существующих элементов токовых цепей по термическому сопротивлению (силовые кабели, монтажные провода и т. д.) и динамическому сопротивлению (шины, трансформаторы тока и т. д.),
  • провести правильный выбор или определение уставок защиты и автоматики,
  • получить селективное срабатывание токовых защит,
  • провести проверку наличия или внедрения эффективной защиты от поражения электрическим током.

Пример расчета тока короткого замыкания

Далее рассмотрим ток трехфазного короткого замыкания при нулевом сопротивлении, который подается через типичный распределительный понижающий трансформатор.

В обычных условиях данный тип повреждений (короткое замыкание болтового соединения) оказывается наиболее опасным, при этом расчет очень прост. Простые расчеты позволяют, придерживаясь определенных правил, получить достаточно точные результаты, приемлемые для проектирования электроустановок.

Ток короткого замыкания во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн — номинальный ток в амперах, Iкз — ток короткого замыкания в амперах, Uкз — напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.

Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей принебрегают.

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

На рисунке ниже приведено пояснение для данного примера.

Рисунок для расчета тока КЗ

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Здесь: U2 — напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт — полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Каждая часть установки, будь то сеть, силовой кабель, непосредственно трансформатор, автоматический выключатель или шина, — имеют свое полное сопротивление Z, состоящее их активного R и реактивного X.

Емкостное сопротивление здесь роли не играет. Z, R и X выражаются в омах, и при расчетах представляются как стороны прямоугольного треугольника, что показано на рисунке ниже. По правилу прямоугольного треугольника вычисляется полное сопротивление.

Треугольник сопротивления

Сеть разделяют на отдельные участки для нахождения X и R для каждого из них, чтобы вычисление было удобным. Для последовательной цепи значения сопротивлений просто складываются, и получаются в итоге Xт и Rт. Полное сопротивление Zт определяется из теоремы Пифагора для прямоугольного треугольника по формуле:

При параллельном соединении участков расчет ведется как для параллельно соединенных резисторов, если объединенные параллельные участки обладают реактивным или активным сопротивлениями, получится эквивалентное общее сопротивление:

Xт не учитывает влияние индуктивностей, и если расположенные рядом индуктивности влияют друг на друга, то реальное индуктивное сопротивление окажется выше. Необходимо отметить, что вычисление Xз связано только к отдельной независимой цепью, то есть так же без влияния взаимной индуктивности. Если же параллельные цепи расположены близко к друг другу, то сопротивление Хз окажется заметно выше.

Рассмотрим теперь сеть, присоединенную к входу понижающего трансформатора. Трехфазный ток короткого замыкания Iкз или мощность короткого замыкания Pкз определяет поставщик электроэнергии, однако можно исходя из этих данных найти полное эквивалентное сопротивление. Полное эквивалентное сопротивление, одновременно приводящее к эквиваленту для низковольтной стороны:

Pкз — мощность трехфазного короткого замыкания, U2 – напряжение на холостом ходу низковольтной цепи.

Как правило, активная составляющая сопротивления высоковольтной сети — Rа — очень мала, и сравнительно с индуктивным сопротивлением — ничтожно мало. Традиционно принимают Xa равным 99,5% от Zа, и Ra равным 10% от Xа. В таблице ниже приведены приблизительные данные относительно этих величин для трансформаторов на 500 МВА и 250 МВА.

Характеристики масляных трансформаторов

Харктеристики сухих трансформаторов

Полное Zтр — сопротивление трансформатора на стороне низкого напряжения:

Pн — номинальная мощность трансформатора в киловольт-ампреах.

Активное сопротивление обмоток находится исходя из мощности потерь.

Когда ведут приблизительные расчеты, то пренебрегают Rтр, и принимают Zтр = Xтр.

Если требуется принять в расчет выключатель низковольтной цепи, то берется полное сопротивление выключателя, расположенного выше точки короткого замыкания. Индуктивное сопротивление принимают равным 0,00015 Ом на выключатель, а активной составляющей пренебрегают.

Что касается сборных шин, то их активное сопротивление ничтожно мало, реактивная же составляющая распределяется примерно по 0,00015 Ом на метр их длины, причем при увеличении расстояния между шинами вдвое, их реактивное сопротивление возрастает лишь на 10%. Параметры кабелей указывают их производители.

Что касается трехфазного двигателя, то в момент короткого замыкания он переходит в режим генератора, и ток короткого замыкания в обмотках оценивается как Iкз = 3,5*Iн. Для однофазных двигателей увеличением тока в момент короткого замыкания можно пренебречь.

Дуга, сопровождающая обычно короткое замыкание, обладает сопротивлением, которое отнюдь не постоянно, но среднее его значение крайне низко, однако и падение напряжения на дуге невелико, поэтому практически ток снижается примерно на 20%, что облегчает режим срабатывания автоматического выключателя, не нарушая его работу, не влияя особо на ток отключения.

Ток короткого замыкания на приемном конце линии связан с током короткого замыкания на подающем ее конце, но учитывается еще сечение и материал передающих проводов, а также их длина. Имея представление об удельном сопротивлении, каждый сможет произвести этот несложный расчет. Надеемся, что наша статья была для вас полезной.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Что такое ток короткого замыкания?

Ток короткого замыкания (short-circuit current) — это сверхток в электрической цепи при коротком замыкании (определение согласно ГОСТ 30331.1-2013). В некоторой нормативной документации используется сокращение «ток КЗ».

Харечко Ю.В. конкретизировал понятие «ток короткого замыкания» следующим образом [2]:

« Ток короткого замыкания представляет собой одну из разновидностей сверхтока. В отличие от тока перегрузки ток короткого замыкания обычно возникает в условиях повреждений, когда повреждается изоляция каких-либо проводящих частей, находящихся под разными электрическими потенциалами, и между ними возникает электрический контакт с пренебрежимо малым полным сопротивлением. В условиях повреждений также возможно замыкание частей, находящихся под напряжением, на открытые и сторонние проводящие части, которые в электроустановках зданий с типами заземления системы TN-S, TN-C-S и TN-C имеют электрическую связь с заземленной нейтралью источника питания. »

« Токи замыкания на землю в системах TN, протекающие по фазным проводникам и защитным или PEN-проводникам, будут сопоставимы с токами однофазных коротких замыканий, которые протекают по фазным проводникам и нейтральным или PEN-проводникам. »

Ток короткого замыкания может также возникнуть в нормальных условиях, когда отсутствуют повреждения, из-за ошибочного соединения проводящих частей с разными электрическими потенциалами, допущенного при монтаже и эксплуатации электроустановки здания. Если ошибочно выполнено электрическое соединение, например, фазного и нейтрального проводников какой-то электрической цепи, то при ее включении по обоим проводникам будет протекать ток однофазного короткого замыкания.

Особенности.

В своей книге [2] Харечко Ю.В. также отразил некоторые особенности, которые касаются понятия «ток короткого замыкания»:

« Величина тока короткого замыкания может многократно (на несколько порядков) превышать значение тока перегрузки и тем более значение номинального тока. Даже кратковременное его воздействие на какие-либо элементы электроустановки зданий может вызвать их механическое повреждение, перегрев, возгорание и, как следствие, явиться причиной пожара в здании. Поэтому электрооборудование в электроустановках зданий, прежде всего – проводники электрических цепей, должно быть надежно защищено от токов короткого замыкания с помощью устройств защиты от сверхтока – автоматических выключателей и плавких предохранителей. »

« Токи короткого замыкания определяют при проектировании электроустановок зданий и учитывают при выборе характеристик электрооборудования. Максимальные токи короткого замыкания всегда соотносят с предельными сверхтоками, которые способны отключить коммутационные устройства и устройства защиты от сверхтока, а также могут пропустить через себя некоторые виды электрооборудования. Минимальные токи короткого замыкания используют для проверки способности устройств защиты от сверхтока выполнить их отключение в течение нормируемого или предпочтительного промежутка времени. »

О методике расчета токов короткого замыкания.

Методики расчета токов короткого замыкания изложены в ГОСТ 28249-93, в стандартах и технических отчетах комплекса МЭК 60909. ГОСТ 28249-93 распространяется на трехфазные электроустановки переменного тока напряжением до 1 кВ, присоединенные к энергосистеме или к автономным источникам электрической энергии. Стандарт устанавливает общую методику расчета токов симметричных и несимметричных коротких замыканий в начальный и произвольный моменты времени с учетом параметров синхронных и асинхронных машин, трансформаторов, реакторов, кабельных и воздушных линий электропередачи, а также шинопроводов.

Комплекс МЭК 60909 применяют для расчета токов короткого замыкания в низковольтных и высоковольтных электроустановках переменного тока частотой 50 или 60 Гц. Однако, как указано в стандарте МЭК 60909-0, электрические системы с напряжением 550 кВ и более, имеющие протяженные линии электропередачи, требуют специального рассмотрения.

Последствия короткого замыкания в электрической цепи

Вследствие многократного увеличения силы тока при коротком замыкании выделяется больше количество тепла. Отдельные виды изоляции могут не выдержать такой температурный режим. Как правило, происходит ее возгорание, что является частой причиной пожаров. Также при высокой температуре в точке замыкания проводников может происходить их механическое разрушение, что приведет к нарушению электроснабжения потребителей.

В отдельных случаях при коротком замыкании возникают электромагнитные колебания деструктивного характера, влияющие на работу аппаратуры связи и других устройств чувствительных к его воздействию.

сила тока короткого замыкания источника

Но несмотря на преобладание негативной составляющей в ситуациях, когда происходит короткое замыкание электрической цепи, это явление с успехом применяется в различных сферах промышленности. Типичным примером использования тепла, которое выделяется при замыкании токопроводящих элементов является точечная сварка металлов.

В точке контакта происходит кратковременное увеличение силы тока, в следствии чего металл достигает расплавленного состояния и детали надежно соединяются. Так же эффект КЗ используется в системах безопасности обслуживания электрических сетей. Когда в цепь преднамеренно включаются специальные предохранители с плавкими вставками. Только в данной ситуации защита направленна на нештатное увеличение напряжения в сети.

Защита цепей и оборудования

После того как электротехника получила толчок к своему интенсивному развитию, возникла серьезная проблема по защите от короткого замыкания и его последствий. Особую актуальность она приобрела с повышением мощности электродвигателей, генераторов, осветительных приборов и другого оборудования.

Простейшим решением стала последовательная установка вместе с нагрузкой плавких одноразовых предохранителей. В случае превышения током установленного значения, выделяемое резистивное тепло воздействовало на них. В результате, предохранители разрушались, прерывали цепь и процесс короткого замыкания прекращался. Подобные элементы до сих пор пользуются спросом из-за своей надежности, простоты и низкой стоимости.

Энергия заряженного конденсатора. Формула

Единственным недостатком такой конструкции является возможность замены плавкой вставки различными металлическими предметами – проволокой, гвоздями или скрепками. Они обладают совершенно другими параметрами и уже неспособны защитить от перегрузок и коротких замыканий.

Ситуация совершенно изменилась, когда на смену одноразовым устройствам пришли автоматические защитные средства. Вначале они стали активно использоваться в промышленности, а потом нашли свое применение в квартирных электрощитах. Автоматика гораздо удобнее в пользовании, поскольку такие устройства не требуют замены. После устранения причин короткого замыкания тепловые элементы остывают, и прибор вновь готов к использованию. Подгоревшие контакты нежелательно чистить или ремонтировать. В случае необходимости они легко заменяются новыми.

Использование эффекта короткого замыкания на практике

Многократно увеличенная сила тока при коротком замыкании приводит к выделению большого количества тепла. Поэтому данный режим нередко вызывает возгорания, разрушения проводки, прекращение электроснабжения потребителей. Довольно часто появление электромагнитных колебаний может существенно нарушить работу чувствительной электронной аппаратуры.

Тем не менее, несмотря на множество негативных факторов, эффект короткого замыкания успешно применяется в сфере промышленного производства. Конечно, для этого необходимо обеспечить надежную защиту и безопасные условия труда для работников.

Типичным примером служит сварочная аппаратура, особенно дуговая, в которой используется принцип короткого замыкания электрода и заземления. В месте контакта сила тока кратковременно возрастает, металл приходит в расплавленное состояние, обеспечивая надежное соединение деталей. Поскольку такой режим действует в течение очень короткого времени, трансформатор вполне способен выдержать перегрузки.

Закон Ома для переменного тока

Как понять Закон Ома: простое объяснение для чайников с формулой и понятиями

Закон Ома для однородного участка цепи – формула

Мультиметр: назначение, виды, обозначение, маркировка, что можно измерить мультиметром

Закон Ома для полной и не полной электрической цепи, формула и правильное определение

Что такое короткое замыкание, его виды и причины возникновения

Оцените статью
TutShema
Добавить комментарий