Как обозначается циклическая частота

Колебания ― это процесс, при котором состояние системы изменяется, повторяясь во времени, и смещаясь то в одну, то в другую сторону относительно состояния равновесия.

Период ― это время, через которое повторяются показатели системы, т. е. система совершает одно полное колебание. Период изменяется в секундах.

Частота ― величина обратная периоду: число полных колебаний за единицу времени.

Частота измеряется в герцах [Гц] = [c -1 ]. Частота равна

Если известно, что тело совершает N колебаний за время t, то частоту его колебаний можно определить как

N ― количество колебаний;

Для описания колебательных систем, совершающих круговые процессы, удобно использовать круговую (циклическую) частоту.

Циклическая частота показывает количество полных колебаний, которые происходят за 2π секунд и равна:

ω = 2πv или (omega = frac<2pi>)

ω ― циклическая частота [рад/с];

Гармонические колебания ― колебания, в которых физические величины изменяются по закону синуса или косинуса.

Кинематическое уравнение гармонических колебаний имеет вид:

x(t) = Asin(ωt + φ0) или x(t) = Acos(ωt + φ0), где

ω ― циклическая частота [рад/с];

Смещение (x) ― это отклонение тела от положения равновесия. Смещение также является координатой тела, если отсчитывать ее от положения равновесия.

Амплитуда колебаний (A) ― максимальное отклонение колеблющейся величины от положения равновесия, т. е. максимальное смещение равно амплитуде колебаний Хmax = A.

Начальная фаза колебаний (φ0) определяет смещение в начальный момент времени, выраженное в радианах.

Фаза колебаний (φ) или полная фаза колебаний, определяет смещение в данный момент времени, выраженное в радианах.

Фаза колебаний равна

φ = ωt + φ0, где

φ ― полная фаза колебаний [рад];

φ0 ― начальная фаза колебаний, [рад];

ω ― циклическая частота [рад/с];

Пример анализа гармонических колебаний точки

Рассмотрим гармонические колебания, в которых уравнение движения точки имеет вид

x(t) = Asin(ωt), где

ω ― циклическая частота [рад/с].

Из уравнения x(t) = Asin(ωt) следует, что начального смещения нет (φ0 = 0) и колебания начинаются из положения равновесия. Смещение x достигает максимального значения Хmax и равно амплитуде Хmax = A, в тот момент, когда модуль синуса равен единице |sin(ωt)| = 1. Когда x = A фаза колебаний равна (varphi = frac<pi> + 2pi n) , когда x = –A фаза колебаний принимает значения (varphi = frac<3pi> + 2pi n) , где n = 0, 1 , 2, … N.

График колебания координаты точки имеет вид:

Определим уравнение и график колебания скорости.

Скорость ― это производная координаты по времени: v = xt’, где:

v ― скорость движения точки [м/с];

Физика Циклическая частота

Циклическая частота гармонических колебаний

Колебательные движения играют важную роль в самых разных вопросах физики. Рассмотрим колебания материальной точки. При колебаниях материальная точка через равные промежутки времени проходит через одно и то же положение при движении в одном направлении.

Самым важным колебательными движениями являются гармонические колебания. Сущность таких колебаний проще всего рассмотреть на следующей кинематической модели. Путь точка M со скоростью ($v$) постоянной по величине движется по окружности радиуса A. При этом ее угловая скорость равна $<omega >_0=const$ (рис.1).

Циклическая частота, рисунок 1

Проекция точки на диаметр окружности, например на ось X, совершает колебания от $N_1$ до $N_2 $и обратно (точка N). Такое колебание N ,будет называться гармоническим. Для его описания следует записать координату точки N, как функцию от времени ($t$). Пусть при $t=0$ радиус OM образует с осью X угол

Примеры задач с решением

Задание. Какова циклическая частота гармонических колебаний точки, которые происходят по оси X, если амплитуда колебаний $A=$15 см; максимальная скорость колебаний точки $v_=45frac$.

Решение. Запишем уравнение гармонических колебаний точки, если известно, что они происходят по оси X:

Скорость этих колебаний найдем, используя (1.1) и кинематическую связь координаты $x$ и соответствующей компоненты скорости:

Максимальное значение скорости (амплитуда скорости) равна:

Следовательно, циклическую частоту колебаний находим как:

Вычислим величину циклической частоты:

Задание. Чему равна циклическая частота колебаний груза, массы $m$ подвешенного на пружине, коэффициент упругости которой $k$?

Решение. Сделаем рисунок.

Циклическая частота, пример 2

Рассмотрим систему, которая состоит из груза, массы $m$ который закреплен на упругой пружине, с коэффициентом жесткости $k$. Будем считать, что сила тяжести, действующая на груз не существенна. Если пружину растянуть (сжать), то сила упругости, возникающая в результате деформации, действующая на груз при небольших деформациях по закону Гука равна:

где $x$ — удлинение пружины. В соответствии со вторым законом Ньютона уравнение движения принимает вид:

тогда уравнение (2.2) преобразуется к виду:

Общее решение уравнения (2.4) это:

Значит, груз на пружине совершает колебания, циклическая частота которых равна:

0$. Через некоторый промежуток времени этот угол получит приращение $<omega >_0t$ и станет равен $<omega >_0t+_0$, тогда:

Выражение (1) является аналитической формой записи гармонического колебания точки N по диаметру $N_1N_2$.

Рассмотрим формулу (1). Параметр $A$ — максимальное отклонение точки, совершающей колебания, от положения равновесия (точки О — центра окружности), амплитуда колебаний.

Величина $<omega >_0$ — циклическая частота колебаний. $varphi =(<omega >_0t+_0$) — фаза колебаний;

0$ — начальная фаза колебаний. Циклическую частоту гармонических колебаний определим как частную производную от фазы колебаний по времени:

Если начальная фаза колебаний равна нулю, то

Выражения (3) и (4) показывают, что при гармонических колебаниях абсцисса $x$ — это функция синус или косинус от времени. При графическом изображении гармонических колебаний получается косинусоида или синусоида. Форма кривой определена амплитудой колебаний и величиной циклической частоты. Положение кривой зависит от начальной фазы.

Период (T) колебаний и циклическая частота связаны формулой:

Циклическую частоту с частотой $nu$ связывает выражение:

Единицей измерения циклической частоты в Международной системе единиц (СИ) является радиан, деленный на секунду:

Размерность циклической частоты:

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ​ ( A, (X_) ) ​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ​ ( varphi ) ​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.
​ ( varphi_0 ) ​ – начальная фаза колебаний.
Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания.
Обозначение – ​ ( T ) ​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Математический маятник

Эта модель рассматривает движение груза, подвешенного на нитке. Описывается система, в которой масса нитки намного меньше массы груза, а ее длина намного больше его размеров.

Формула расчетаколебаний

Также нить должна быть невесомой и нерастяжимой.

Груз в этом случае считается материальной точкой.

При выполнении этих условий частота колебаний маятника и период не будут зависеть от массы груза. Движение математического маятника рассматривается при небольшом угле отклонения (α). Последний измеряется в радианах, поэтому приблизительно соответствует по значению его синусу и тангенсу. Этот же угол пропорционален отношению смещения на длину нити:

α=x/l.

Второй закон ньютона

На маятник действует синусовая составляющая силы тяжести и тангенсовая сила натяжения нити. Согласно второму закону Ньютона: ma=-mgsin (α). Откуда можно получить a=-gx/l

Вторая производная уравнения движения дает a=-(ω)^2x

Таким образом: -gx/l=-(ω)^2x -> ω ^2=g/l.

Период: T=2π /ω T=2π*sqrt (g/l)

Это формула Галилея, которая описывает движение математического маятника.

Формула частоты колебаний для математического маятника: v=sqrt (l/g)/2π.

Пружинный маятник

Подобным термином называется система, в которой движения совершает груз, подвешенный на легкой пружине.

Пружинный маятник

Тело находится в положении равновесия, если пружина не деформирована. Если ее растянуть или сжать, то система начнет колебания под действием силы упругости, которая направлена на приведение маятника в положение равновесия.

Сила упругости пропорциональна смещению тела (x), но направлена противоположно. Коэффициент пропорциональности между этими двумя величинами носит название жесткости пружины (k). Таким образом:

F=-kx.

Сила упругости достигает наибольшей величины в положении максимального отклонения тела (амплитуда, смещение) от равновесия. В этой точке наибольшую величину имеет и ускорение.

Формулы расчета

По мере того, как тело приближается к положению равновесия, уменьшается сила упругости и ускорение. В средней точки обе величины равны нулю, но ненулевое значение имеет скорость тела. Поэтому груз не останавливается, а продолжает движение.

После прохождения положения равновесия он двигается в обратном направлении по инерции, а сила упругости тянет его назад. Благодаря трению воздуха скорость уменьшается, и маятник останавливается.

Все эти модели можно отнести к классическому гармоническому осциллятору — системе, которая имеет одну степень свободы и описывается единственным уравнением.

Амплитуда колебаний

Помимо частоты и периода важной характеристикой колебаний является амплитуда.

Амплитуда колебаний – это модуль максимального смещения тела от положения равновесия. Другими словами, это расстояние между положением равновесия и крайней точкой траектории маятника. Рассмотрим рисунок 3. На нем изображен уже знакомый вам нитяной маятник. В идеальном случае амплитуду колебаний маятника нужно считать как длину дуги от положения равновесия до крайней точки. Но если мы считаем, что колебания малые – то есть длина нити маятника (l) гораздо больше смещения (S), можно считать, что длина дуги совпадает с длиной отрезка между проекциями положения равновесия и крайней точки на ось ОХ.

6 odnosostavnye predlozheniya

Рис.3 – Амплитуда колебаний нитяного маятника

Обычно амплитуда обозначается большой латинской буквой A.

Колебательные системы

Для того, чтобы рассмотреть колебательные движения подробнее, рассмотрим несколько колебательных систем, на примере которых будет рассматривать все закономерности.

1. Маятник

В общем случае маятник – это система, способная совершать колебания под действием каких-либо сил, например, сил трения, упругости, тяжести.

2. Пружинный маятник

Пружинный маятник – это система, состоящая из упругой пружины, один конец которой закреплен, а на другой прикреплен груз.

Такой маятник может быть вертикальным (рисунок 4а), тогда колебания будут совершаться под действием сил тяжести и упругости; и горизонтальным (рисунок 4б), тогда на груз будут действовать сил упругости и трения.

7 odnosostavnye predlozheniya

Рис.4 – Пружинный маятник

Для пружинного маятника справедливы формулы:

8 odnosostavnye predlozheniya

где T –период колебаний пружинного маятника; π ~ 3.14; m–масса груза;k–коэффициент жесткости пружины; — частота колебаний пружинного маятника.

*Ранее говорилось, что существует такая характеристика, как циклическая частота. Формула для ее нахождения будет выглядеть так:

9 odnosostavnye predlozheniya

3. Нитяной маятник

Этот вид маятника уже рассматривался ранее (см. рисунок 3), он состоит из длинной нити и тяжелого грузика, подвешенного на ней.

Для нитяного маятника справедливы формулы:

10 odnosostavnye predlozheniya

где T – период колебаний нитяного маятника; π ~ 3.14; l –длина нити; g – ускорение свободного падения (~9,8 м/с 2 ), v — частота колебаний.

Интересно отметить, что период нитяного маятника и, следовательно, его частота не зависят от массы грузика, прикрепленного к нити.

*Следует отметить, что все приведенные формулы справедливы только для малых колебаний.

** Циклическая частота нитяного маятника:

11 odnosostavnye predlozheniya

Кинематическая модель гармонических колебаний

Пусть материальная точка $A$ равномерно движется по окружности (рис.1). Угловую скорость ее движения обозначим $omega_0=const$. Радиус окружности равен $R$.

Рисунок 1. Точка движется по окружности. Автор24 — интернет-биржа студенческих работ

Проектируя место наше точки в момент времени $t$ (рис.1) на ось $OZ$ мы получим точку $Z$, которая находится на расстоянии $z$ от начала координат (точки $O$). С течением времени (в ходе перемещения материальной точки $A$ по окружности) точка $Z$ будет совершать колебания от положения $Z_1$ до положения $Z_2$ и в обратную сторону.

Рассматриваемое колебание точки $Z$ будет гармоническим. Для его описания достаточно записать закон изменения расстояния $z$ (координаты $z$) от начала координат (точки $O$) в зависимости от времени, то есть получить функцию $z(t)$.

Начинай год правильно
Выигрывай призы на сумму 400 000 ₽

Будем считать, что при $t=0$ радиус $ОA$ составляет угол $alpha$ с осью $OZ$. Через время $t$ данный угол изменится на величину $omega_0 t$. Из прямоугольного треугольника $OZA$ мы получим:

$z(t)=Rcos (omega_0 t+alpha)=z_mcos (omega_0 t+alpha) (2).$

Выражение (2) описывает гармонические колебания точки $A$ по оси $OZ$.

Параметр $R=z_m$ в данном случае – это наибольшее отклонение точки, выполняющей колебания от положения равновесия (точки $O$), данный параметр носит название амплитуды колебаний.

Угловая скорость вращения точки по окружности в данной модели будет играть роль циклической частоты колебаний.

  • При начальной фазе колебаний равной нулю $(alpha=0),$ имеем $z(t)= z_mcos (omega_0 t );$
  • При $alpha=frac<pi>$ мы получим, что $z(t)= z_msin (omega_0 t ).$

Мы видим, что при гармонических колебаниях координата $z$ является функцией синуса или косинуса, зависящей от времени.

Гармонические колебания часто изображают в виде графиков. При этом по горизонтальной оси откладывают время, на вертикальной оси — координату. Получают периодическую кривую (синусоиду или косинусоиду). При этом форма кривой зависит только от амплитуды и круговой частоты гармонических колебаний. Положение данной кривой определяет начальная фаза колебаний.

Период колебаний и круговая частота

Синус (косинус) является периодической функцией, следовательно, рассматриваемое нами движение является периодическим. Период этих тригонометрических функций составляет $T=2pi$. Это означает, что по истечении времени $T$ точка, выполняющая колебания приходит в свое исходное положение, сохраняя свое направление движения. $T$ называют периодом колебаний.

Период колебаний и круговая частота колебаний связаны выражением:

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша­ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т) — это время, за которое совершается одно полное ко­лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

Амплитуда период частота колебаний

За полный период колебаний, таким образом, тело проходит путь, равный четы­рем амплитудам. Период колебаний измеряется в единицах времени — секундах, минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Амплитуда период частота колебаний

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей­ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес­ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю­щихся величин, например, для затухающих колебаний.

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с.

Единица частоты в СИ названа герцем (Гц) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v) равна 1 Гц, то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

Амплитуда период частота колебаний

.

В теории колебаний пользуются также понятием циклической, или круговой частоты ω. Она связана с обычной частотой v и периодом колебаний Т соотношениями:

Амплитуда период частота колебаний

.

Циклическая частота — это число колебаний, совершаемых за 2π секунд.

Оцените статью
TutShema
Добавить комментарий