Как найти сопротивление зная силу тока и напряжение

Содержание

Оборудование / Электроинструмент, электрика и онлайн калькуляторы / Онлайн калькулятор — закон Ома (ток, напряжение, сопротивление) + Мощность

Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.

В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.

Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению

Так записывается основная формула:

Путем преобразования основной формулы можно найти и другие две величины:

Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Формула мгновенной электрической мощности:

Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.

Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.

Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.

ohms_law-05.jpg

Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.

Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.

ohms_law-07.png

Урок 151 (осн). Зависимость силы тока от напряжения. Закон Ома

Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.

ohms_law-08.png

Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.

ohms_law-09.png

Этот круг также, как и треугольник можно назвать магическим.

Закон Ома

Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).

Найти силу тока

Напряжение: U = В
Сопротивление: R = Ом

Сила тока

Формула

Пример

Если напряжение на концах участка цепи U = 12 В, а его электрическое сопротивление R = 2 Ом, то:

Сила тока на этом участке I = 12 /2= 6 А

Найти напряжение

Сила тока: I = A
Сопротивление: R = Ом

Напряжение

Формула

Пример

Если сила тока на участке цепи I = 6 А, а электрическое сопротивление этого участка R = 2 Ом, то:

Напряжение на этом участке U = 6⋅2 = 12 В

Найти сопротивление

Напряжение: U = В
Сила тока: I = A

Сопротивление

Формула

Пример

Если напряжение на концах участка цепи U = 12 В, а сила тока на участке цепи I = 6 А, то:

Электрическое сопротивление на этом участке R = 12 /6 = 2 Ом

Закон Ома для полной цепи

Закон Ома для полной цепи гласит, что сила тока в цепи пропорциональна действующей в цепи электродвижущей силе (ЭДС) и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

Найти силу тока

ЭДС: ε = В
Сопротивление всех внешних элементов цепи: R = Ом
Внутреннее сопротивление источника напряжения: r = Ом

Формула

Пример

Если ЭДС источника напряжения ε = 12 В, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

Сила тока I = 12 /4+2 = 2 А

Найти ЭДС

Сила тока: I = А
Сопротивление всех внешних элементов цепи: R = Ом
Внутреннее сопротивление источника напряжения: r = Ом

Формула

Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

ЭДС ε = 2 ⋅ (4+2) = 12 В

Найти внутреннее сопротивление источника напряжения

Сила тока: I = А
ЭДС: ε = В
Сопротивление всех внешних элементов цепи: R = Ом

Внутреннее сопротивление источника напряжения: r =

Формула

Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а ЭДС источника напряжения ε = 12 В, то:

Внутреннее сопротивление источника напряжения r = 12/2 — 4 = 2 Ом

Найти сопротивление всех внешних элементов цепи

Сила тока: I = А
ЭДС: ε = В
Внутреннее сопротивление источника напряжения: r = Ом

Сопротивление всех внешних элементов цепи: R =

Формула

Пример

Если сила тока в цепи I = 2A, внутреннее сопротивление источника напряжения r = 2 Ом, а ЭДС источника напряжения ε = 12 В, то:

Сопротивление всех внешних элементов цепи: R = 12/2 — 2 = 4 Ом

Электрический ток. Закон Ома для участка цепи и полной цепи постоянного и переменного токов

Начнём с терминологии.
Электрический ток – это направленное движение заряженных частиц, при котором происходит перенос заряда из одной области электрической цепи в другую.
Силой электрического тока (I) является величина, которая численно равна количеству заряда Δq, протекающего через заданное поперечное сечение проводника S за единицу времени Δt: I = Δq/Δt .
Напряжение электрического тока между точками A и B электрической цепи — физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.
Омическое (активное) сопротивление – это сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии постоянного тока.
Теперь можно переходить к закону Ома.

Закон Ома был установлен экспериментальным путём в 1826 году немецким физиком Георгом Омом и назван в его честь. По большому счёту, Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, определяющих зависимость между электрическими величинами, такими как: напряжение, сопротивление и сила тока исключительно для проводников, обладающих постоянным сопротивлением. При расчёте напряжений и токов в нелинейных цепях, к примеру, таких, которые содержат полупроводниковые или электровакуумные приборы, этот закон в простейшем виде уже использоваться не может.

Тем не менее, закон Ома был и остаётся основным законом электротехники, устанавливающим прямую связь силы электрического тока с сопротивлением и напряжением, и является самым востребованным как для начинающего радиолюбителя, так идля профессионального разработчика.

Формулировка закона Ома для участка цепи может звучать так: Сила тока в проводнике прямо пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника и записана в следующем виде: I=U/R,

Закон Ома для участка цепи

где: I – сила тока в проводнике, измеряемая в амперах [А];
U – напряжение (разность потенциалов) в вольтах [В];
R – электрическое сопротивление проводника в омах [Ом].

Производные от этой формулы приобретают такой же незамысловатый вид:
R=U/I и U=R×I.

Зная любые 2 из 3-ёх приведённых параметров, можно произвести также расчёт величины мощности, рассеиваемой на сопротивлении нагрузки.

Мощность является функцией протекающего черех нагрузку тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам, также являющимся производными от основной формулы закона Ома:
P(Вт) = U(В)×I(А) = I 2 (А)×R(Ом) = U 2 (В)/R(Ом)

Формулы, описывающие закон Ома, настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной крупной статьи на страницах уважающего себя сайта.
Не заслуживают, так не заслуживают. Деревянные счёты Вам в помощь, уважаемые дамы и рыцари! Считайте, однако учитывайте размерность, не стирайте из памяти:

Единицы измерения напряжения: 1 В = 1000 мВ = 1000000 мкВ;
Единицы измерения силы тока: 1 А = 1000 мА = 1000000 мкА;
Единицы измерения сопротивления: 1 Ом = 0.001 кОм = 0.000001 МОм;
Единицы измерения мощности: 1 Вт = 1000 мВт = 100000 мкВт.

Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатый калькулятор, позволяющий в онлайн режиме проверить расчёты, связанные со знанием формул закона Ома.

Калькулятор для проверки результатов расчёта закона Ома

Вводить в калькулятор нужно только два имеющихся у Вас параметра, остальные посчитаются сами.

Все наши расчёты проводились при условии, что значение внешнего сопротивления R значительно превышает внутреннее сопротивление источника напряжения rвнутр .
Если это условие не соблюдается, то под величиной R следует принять сумму внешнего и внутреннего сопротивлений: R = Rвнешн + rвнутр .
После этого закон приобретает более солидное название – закон Ома для полной цепи, а формула становится: I=U/(R+r) .

Для многозвенной цепи необходимо преобразовать её к эквивалентному виду:

Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов определяются исходя из формулы: 1/Rll = 1/R4+1/R5 .
Онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких резисторов можно найти на странице ссылка на страницу.

Теперь, что касается закона Ома для переменного тока.
Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше, остаётся в силе.
Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока – под значением U следует понимать действующее (эффективное) значение амплитуды переменного сигнала.

А что такое действующее (эффективное) значение и как оно связано с амплитудой сигнала переменного тока?
Приведём диаграммы для нескольких различных форм сигнала.

Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2), сигнала треугольной формы, сигнала пилообразной формы.
Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов – это максимальное значение, которого достигает амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.

Рассчитать действующее значение напряжение интересующей нас формы можно по следующим соотношениям:
1. Для синуса – U = Uд = Uа/√2;
2. для треугольника и пилы – U = Uд = Uа/√3;
3. для меандра – U = Uд = Uа.

С этим разобрались!
А теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости в цепи переменного тока.
В общем случае выглядеть это будет так:

Закон Ома для переменного тока

Закон Ома для переменного тока

А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z, состоящее из активного, ёмкостного и индуктивного сопротивлений.
Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих трёх элементов обойтись не удаётся, и формула приобретает вид: .

Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице – (ссылка на страницу) и знаем, что величины эти зависят от частоты, протекающего через них тока и описываются формулами:
XC = 1/(2πƒС) , XL = 2πƒL .

Нарисуем ещё один калькулятор для расчёта полного сопротивления цепи для переменного тока.
Количество вводимых элементов должно быть не менее одного, при наличии индуктивного или емкостного элемента – необходимо указать значение частоты f .

Онлайн расчёт полного сопротивления цепи

А теперь рассмотрим практический пример применения закона Ома для цепей переменного тока и рассчитаем простой бестрансформаторный источник питания.

Токозадающими цепями в данной схеме являются элементы R1 и С1.
Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.
Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.
Зададимся током через стабилитрон с некоторым запасом – 200мА.
С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в – 12в = 208в.
Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА:
Z = 208в/200мА = 1,04кОм.
Резистор R1 является токоограничивающим и выбирается в пределах 10. 100 Ом в зависимости от максимального тока нагрузки.
Зададимся номиналами R1 = 30 Ом, С1 = 1 Мкф, частотой сети f = 50 Гц и подставим всё это хозяйство в калькулятор.
Получили полное сопротивление цепи, равное 3.183кОм. Многовато будет – надо увеличивать ёмкость С1.
Поигрались туда-сюда, нашли нужное значение ёмкости – 3,18 Мкф, при котором Z = 1,04кОм.
Всё – закон Ома выполнил свою функцию, расчёт закончен.

Электрический ток. Закон Ома для участка цепи и полной цепи постоянного и переменного токов

Онлайн расчёт электрических величин напряжения, тока и мощности с резистивными, ёмкостными и индуктивными элементами. Закон Ома простыми словами, теория и практика для начинающих

Начнём с терминологии.
Электрический ток – это направленное движение заряженных частиц, при котором происходит перенос заряда из одной области электрической цепи в другую.
Силой электрического тока (I) является величина, которая численно равна количеству заряда Δq, протекающего через заданное поперечное сечение проводника S за единицу времени Δt: I = Δq/Δt .
Напряжение электрического тока между точками A и B электрической цепи — физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.
Омическое (активное) сопротивление – это сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии постоянного тока.
Теперь можно переходить к закону Ома.

Закон Ома был установлен экспериментальным путём в 1826 году немецким физиком Георгом Омом и назван в его честь. По большому счёту, Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, определяющих зависимость между электрическими величинами, такими как: напряжение, сопротивление и сила тока исключительно для проводников, обладающих постоянным сопротивлением. При расчёте напряжений и токов в нелинейных цепях, к примеру, таких, которые содержат полупроводниковые или электровакуумные приборы, этот закон в простейшем виде уже использоваться не может.

Тем не менее, закон Ома был и остаётся основным законом электротехники, устанавливающим прямую связь силы электрического тока с сопротивлением и напряжением, и является самым востребованным как для начинающего радиолюбителя, так идля профессионального разработчика.

Формулировка закона Ома для участка цепи может звучать так: Сила тока в проводнике прямо пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника и записана в следующем виде: I=U/R,

Закон Ома для участка цепи

где: I – сила тока в проводнике, измеряемая в амперах [А];
U – напряжение (разность потенциалов) в вольтах [В];
R – электрическое сопротивление проводника в омах [Ом].

Производные от этой формулы приобретают такой же незамысловатый вид:
R=U/I и U=R×I.

Зная любые 2 из 3-ёх приведённых параметров, можно произвести также расчёт величины мощности, рассеиваемой на сопротивлении нагрузки.

Мощность является функцией протекающего черех нагрузку тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам, также являющимся производными от основной формулы закона Ома:
P(Вт) = U(В)×I(А) = I 2 (А)×R(Ом) = U 2 (В)/R(Ом)

Формулы, описывающие закон Ома, настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной крупной статьи на страницах уважающего себя сайта.
Не заслуживают, так не заслуживают. Деревянные счёты Вам в помощь, уважаемые дамы и рыцари! Считайте, однако учитывайте размерность, не стирайте из памяти:

Единицы измерения напряжения: 1 В = 1000 мВ = 1000000 мкВ;
Единицы измерения силы тока: 1 А = 1000 мА = 1000000 мкА;
Единицы измерения сопротивления: 1 Ом = 0.001 кОм = 0.000001 МОм;
Единицы измерения мощности: 1 Вт = 1000 мВт = 100000 мкВт.

Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатый калькулятор, позволяющий в онлайн режиме проверить расчёты, связанные со знанием формул закона Ома.

Калькулятор для проверки результатов расчёта закона Ома

Вводить в калькулятор нужно только два имеющихся у Вас параметра, остальные посчитаются сами.

Все наши расчёты проводились при условии, что значение внешнего сопротивления R значительно превышает внутреннее сопротивление источника напряжения rвнутр .
Если это условие не соблюдается, то под величиной R следует принять сумму внешнего и внутреннего сопротивлений: R = Rвнешн + rвнутр .
После этого закон приобретает более солидное название – закон Ома для полной цепи, а формула становится: I=U/(R+r) .

Для многозвенной цепи необходимо преобразовать её к эквивалентному виду:

Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов определяются исходя из формулы: 1/Rll = 1/R4+1/R5 .
Онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких резисторов можно найти на странице ссылка на страницу.

Теперь, что касается закона Ома для переменного тока.
Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше, остаётся в силе.
Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока – под значением U следует понимать действующее (эффективное) значение амплитуды переменного сигнала.

А что такое действующее (эффективное) значение и как оно связано с амплитудой сигнала переменного тока?
Приведём диаграммы для нескольких различных форм сигнала.

Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2), сигнала треугольной формы, сигнала пилообразной формы.
Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов – это максимальное значение, которого достигает амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.

Рассчитать действующее значение напряжение интересующей нас формы можно по следующим соотношениям:
1. Для синуса – U = Uд = Uа/√2;
2. для треугольника и пилы – U = Uд = Uа/√3;
3. для меандра – U = Uд = Uа.

С этим разобрались!
А теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости в цепи переменного тока.
В общем случае выглядеть это будет так:

Закон Ома для переменного тока

Закон Ома для переменного тока

А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z, состоящее из активного, ёмкостного и индуктивного сопротивлений.
Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих трёх элементов обойтись не удаётся, и формула приобретает вид: .

Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице – (ссылка на страницу) и знаем, что величины эти зависят от частоты, протекающего через них тока и описываются формулами:
XC = 1/(2πƒС) , XL = 2πƒL .

Нарисуем ещё один калькулятор для расчёта полного сопротивления цепи для переменного тока.
Количество вводимых элементов должно быть не менее одного, при наличии индуктивного или емкостного элемента – необходимо указать значение частоты f .

Онлайн расчёт полного сопротивления цепи

А теперь рассмотрим практический пример применения закона Ома для цепей переменного тока и рассчитаем простой бестрансформаторный источник питания.

Токозадающими цепями в данной схеме являются элементы R1 и С1.
Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.
Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.
Зададимся током через стабилитрон с некоторым запасом – 200мА.
С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в – 12в = 208в.
Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА:
Z = 208в/200мА = 1,04кОм.
Резистор R1 является токоограничивающим и выбирается в пределах 10. 100 Ом в зависимости от максимального тока нагрузки.
Зададимся номиналами R1 = 30 Ом, С1 = 1 Мкф, частотой сети f = 50 Гц и подставим всё это хозяйство в калькулятор.
Получили полное сопротивление цепи, равное 3.183кОм. Многовато будет – надо увеличивать ёмкость С1.
Поигрались туда-сюда, нашли нужное значение ёмкости – 3,18 Мкф, при котором Z = 1,04кОм.
Всё – закон Ома выполнил свою функцию, расчёт закончен.

Полезная информация для начинающего электрика

Как использовать закон Ома на практике

Почти два столетия назад в далеком 1827 году своими экспериментами Георг Ом выявил закономерность между основными характеристиками электричества.

Он изучил и опубликовал влияние сопротивления участка цепи на величину тока, возникающего под действием напряжения. Ее удобно представлять наглядной картинкой.

Закон Ома

Любую работу всегда создает трудяга электрический ток. Он вращает ротор электрического двигателя, вызывает свечение электрической лампочки, сваривает или режет металлы, выполняет другие действия.

Поэтому ему необходимо создать оптимальные условия: величина электрического тока должна поддерживаться на номинальном уровне. Она зависит от:

  1. значения приложенного к цепи напряжения;
  2. сопротивления среды, по которой движется ток.

Здесь напряжение, как разность потенциалов приложенной энергии, является той силой, которая создает электрический ток.

Напряжение

Если напряжения не будет, то никакой полезной работы от подключённой электрической схемы не произойдёт из-за отсутствия тока. Эта ситуация часто встречается при обрыве, обломе или отгорании питающего провода.

Обрыв провода

Сопротивление же решает обратную для напряжения задачу. При очень большой величине оно так ограничивает ток, что он не способен совершить никакой работы. Этот режим применяется у хороших диэлектриков.

Примеры из жизни

№1: выключатель освещения разрывает цепь электрических проводов, по которым напряжение добирается до лампочки.

Между контактами образуется воздушный зазор. Он отличный изолятор, исключающий движение тока по осветительному прибору.

№2: клеммы розетки, как источника напряжения, замкнули между собой без сопротивления короткой проволокой. В этой ситуации создается короткое замыкание.

Короткое замыкание в розетке

Ток КЗ способен сжечь электропроводку, вызвать пожар в квартире. Поэтому от таких ситуаций существует только одно спасение: использование защит, способных максимально быстро отключить питающее напряжение.

Для бытовой сети это функция автоматических выключателей или предохранителей, о работе которых я буду рассказывать в других статьях.

Используя сопротивление, следует понимать, что оно, само по себе, не вечно: обладая резервом противостояния приложенной энергии, оно может его израсходовать, не справиться со своей задачей и сгореть.

Поэтому для сопротивления вводится понятие мощности рассеивания, которая надежно отводится во внешнюю среду. Если тепловая энергия, развиваемая прохождением тока, превышает эту величину, то сопротивление сгорает.

Напряжение и сопротивление в комплексе формируют электрические процессы. Онлайн калькулятор закона Ома позволяет оптимально рассчитать величину тока, необходимую для совершения полезной работы.

Что такое участок цепи

Рассмотрим самую простую электрическую схему, состоящую из батарейки, лампочки и проводов. В ней циркулирует электрический ток.

Участок электрической цепи

Представленная схема или полная цепь состоит из двух контуров:

  1. Внутреннего источника напряжения.
  2. Внешнего участка: лампочки с подключенными проводами.

Те процессы, которые происходят внутри батарейки, нас интересуют в основном как познавательные. Их мы можем только ухудшить при неправильной эксплуатации.

Например, приходящая в квартиру электрическая энергия от трансформаторной подстанции нам не подвластна. Мы ей просто пользуемся. От неисправностей и аварийных режимов нас защищают автоматические выключатели, УЗО, реле РКН, ограничители перенапряжения или УЗИП, другие современные модули защит.

Внешний же, подключенный к источнику напряжения контур, является участком цепи, в котором мы, используя закон Ома, совершаем полезную для себя работу.

Как использовать треугольник закона Ома

Простое мнемоническое правило представлено тремя составляющими в виде частей треугольника. Оно позволяет легко запомнить взаимосвязи между током, сопротивлением и напряжением.

Треугольник закона Ома

Вверху всегда стоит напряжение. Ток и сопротивление снизу. Когда вычисляем какую-то одну величину по двум другим, то ее изымаем из треугольника и выполняем арифметическое действие: деление или умножение.

Шпаргалка электрика для новичков

Треугольник закона Ома легко запоминается, но он не позволяет учитывать мощность потребления электроприбора. Этот четвертый параметр, важный для любого домашнего электрика, всегда надо учитывать. .

На всех бытовых электрических приборах указывают мощность потребления электрической энергии в ваттах или киловаттах. Ее формулы, совместно с предыдущими величинами, можно брать со следующей картинки.

Шпаргалка электрика

Такая шпаргалка электрика позволяет делать простые вычисления в уме или на бумаге. Формулы из нее заложены в алгоритм, по которому работает мой онлайн калькулятор закона Ома.

Предлагаю провести одинаковые вычисления обоими методами и сравнить полученные результаты. Если вдруг найдете расхождения, то укажите в комментариях. Это будет ваша помощь моему проекту.

Я постарался кратко и просто рассказать о принципах работы закона Ома применительно к задачам, решаемым домашним мастером. Считаю, что это достаточно и не рассматриваю закон Ома для полной цепи в обычной форме, комплексных числах, или ином виде.

Если же вы хотите просмотреть видеоурок по этой теме, то воспользуйтесь материалами владельца Физика-Закон Ома.

Возможно, у вас остались вопросы о работе калькулятора? Задавайте. Я на них отвечу. Воспользуйтесь разделом комментариев.

Напоследок напоминаю, что у вас сейчас самое благоприятное время поделиться этим материалом с друзьями в соц сетях и подписаться на рассылку сайта. Тогда вы сможете своевременно получать информацию о новых публикуемых статьях.

Как вычислить силу тока, напряжение или сопротивление по закону Ома самостоятельно

Для вычисления силы тока, напряжения или сопротивления по закону Ома, вам необходимо знать два из трех параметров: силу тока (I), напряжение (V) и сопротивление (R).

Закон Ома утверждает, что сила тока (I) в электрической цепи прямо пропорциональна напряжению (V), а обратно пропорциональна сопротивлению (R).

Для примера, если вам даны значения сопротивления и напряжения, то вы можете вычислить силу тока по формуле I = V/R.

Аналогично, если вам даны значения силы тока и сопротивления, то вы можете вычислить напряжение по формуле V = IR.

И, наконец, если вам даны значения силы тока и напряжения, то вы можете вычислить сопротивление по формуле R = V/I.

Зная любые два параметра, вы всегда можете вычислить третий параметр, используя формулы, указанные выше.

✍️ Полезные советы

Несколько советов, которые могут помочь при использовании закона Ома:

  1. Изучите формулу закона Ома: U = I x R, где U — напряжение в вольтах (V), I — сила тока в амперах (A) и R — сопротивление в омах (Ω).
  2. Измерьте два из трех параметров, чтобы вычислить третий. Например, если известны сила тока и сопротивление, то напряжение можно вычислить, используя формулу U = I x R.
  3. Если известно напряжение и сопротивление, то можно вычислить силу тока, используя формулу I = U / R.
  4. Используйте мультиметр, чтобы измерить напряжение, силу тока или сопротивление в цепи. Мультиметр — это электронный прибор, который может измерять различные параметры электрической цепи.
  5. Убедитесь, что ваш мультиметр настроен на правильный диапазон измерения. Если измерение производится неправильным диапазоном, то мультиметр может дать неверные результаты.
  6. Не забывайте учитывать единицы измерения. Напряжение измеряется в вольтах (V), сила тока в амперах (A) и сопротивление в омах (Ω).
  7. Если возникают трудности при вычислении, попросите помощи у опытного электрика или другого квалифицированного специалиста. Ошибки в вычислениях могут привести к повреждению оборудования или даже к возгоранию.

Формула закона Ома

Ток резистора I в амперах (А) равен напряжению резистора V в вольтах (В), деленному на сопротивление R в омах (Ом):

V — падение напряжения на резисторе, измеренное в вольтах (В). В некоторых случаях в законе Ома для обозначения напряжения используется буква E. E обозначает электродвижущую силу.

I — электрический ток, протекающий через резистор, измеряется в амперах (А).

R — сопротивление резистора, измеренное в Ом (Ом).

Расчет напряжения

Зная ток и сопротивление, мы можем рассчитать напряжение.

Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):

Расчет сопротивления

Зная напряжение и ток, мы можем рассчитать сопротивление.

Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (А):

Поскольку ток задается значениями напряжения и сопротивления, формула закона Ома может показать, что:

  • Если мы увеличим напряжение, ток увеличится.
  • Если мы увеличим сопротивление, ток уменьшится.

Пример # 1

Найдите ток электрической цепи с сопротивлением 50 Ом и напряжением питания 5 Вольт.

I = V / R = 5 В / 50 Ом = 0,1 А = 100 мА

Пример # 2

Найдите сопротивление электрической цепи, имеющей напряжение питания 10 В и ток 5 мА.

I = 5 мА = 0,005 А

R = V / I = 10 В / 0,005 A = 2000 Ом = 2 кОм

Закон Ома для цепи переменного тока

Ток нагрузки I в амперах (А) равен напряжению нагрузки V Z = V в вольтах (В), деленному на полное сопротивление Z в омах (Ом):

V — падение напряжения на нагрузке, измеренное в вольтах (В).

I — электрический ток, измеряемый в амперах (А)

Z — полное сопротивление нагрузки, измеренное в Ом (Ом).

Пример # 3

Найдите ток в цепи переменного тока с напряжением питания 110 В ± 70 ° и нагрузкой 0,5 кОм ± 20 °.

Z = 0,5 кОм∟20 ° = 500 Ом∟20 °

I = V / Z = 110V∟70 ° / 500Ω∟20 ° = (110V / 500Ω) (70 ° -20 °) = 0,22A 50 °

Калькулятор закона Ома (краткая форма)

Калькулятор закона Ома: вычисляет соотношение между напряжением, током и сопротивлением.

Введите 2 значения, чтобы получить третье значение, и нажмите кнопку « Рассчитать» :

Единицы измерения: вольт, ампер и ом

Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, нам нужно уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любые другие физические величины. Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. В таблице ниже приведены стандартные единицы измерения электрического тока, напряжения и сопротивления:

ТокIАмперА
НапряжениеVВольтВ
СопротивлениеRОмОм

«Символ», присвоенный каждой величине, представляет собой стандартную букву латинского алфавита, используемую для представления этой величины в формулах. Подобные стандартизированные буквы распространены во всех физических и технических дисциплинах и признаны во всем мире. «Сокращение единицы измерения» для каждой величины представляет собой алфавитный символ(ы), используемый в качестве сокращенного обозначения конкретной единицы измерения.

Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта, а ом в честь немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I».

Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»). Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени.

Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.

Кулон и электрический заряд

Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.

Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении).

В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.

Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.

Электрическое сопротивление. Закон Ома для участка электрической цепи

Для изучения зависимости электрических параметров соберём электрическую цепь, изображённую на схеме (рис.(1)).

Состав схемы (по часовой стрелке по ходу электрического тока):

  1. источник электрического напряжения (тока);
  2. электрический ключ для размыкания;
  3. последовательно подключённый амперметр для измерения силы тока в цепи;
  4. сопротивление (спираль никелиновой проволоки);
  5. вольтметр, подключённый параллельно к сопротивлению.

4.png

Рис. (1). Первая схема электрической цепи

При замыкании цепи отметим показания приборов. Используя регулятор напряжения на источнике, изменим напряжение в два раза. При этом показания вольтметра и амперметра также изменятся в два раза. Продолжим увеличивать напряжение на источнике. Наблюдения показывают, что при увеличении напряжения в (3) раза, вольтметр покажет увеличение напряжения на спирали в три раза. Во столько же раз увеличится и сила тока.
Опыт показывает зависимость изменения силы тока от приложенного напряжения.

Сила тока в проводнике прямо пропорциональна напряжению на концах проводника: (Ibacksim U).
Эту зависимость можно изобразить графически:
Рис. (2). График зависимости силы тока в проводнике от напряжения между концами этого проводника

При включении в электрическую цепь источника тока различных проводников и амперметров увидим, что для разных проводников показания амперметров различны, значит, сила тока для каждого проводника отличается.

5.png

Рис. (3). Электрическая схема с набором различных сопротивлений (AB), (CD), (EF)
Графики тоже будут отличаться.

id63_1.png

Рис. (4). Графики зависимости силы тока от напряжения для сопротивлений (AB), (CD), (EF)

Вольтметр подключим поочерёдно к концам этих проводников. Увидим равные значения напряжения. Значение силы тока на участке цепи пропорционально разности потенциалов на его концах и зависит от рода вещества проводника. Отличие электрических параметров (U) и (I) связано с тем, что проводники имеют разное электрическое сопротивление.

Сопротивление проводника равно (1) Ом , если в проводнике при напряжении на концах (1) вольт протекает сила тока (1) ампер :

Оцените статью
TutShema
Добавить комментарий