Как найти скорость распространения волны

Фронт волны (волновая поверхность) — это геометрическое место точек среды, для которых в некоторый момент времени фаза волны имеет одно и то же значение.

Скоростью волны называют скорость, с которой движется фронт волны.

Формула фазовой скорости волны

Рассмотрим одномерный случай для гармонической волны. Уравнение волновой поверхности при это запишем как:

[Ф_s=omega t-kx+varphi left(1right),]

где

Формула скорости волны

Фронт волны (волновая поверхность) — это геометрическое место точек среды, для которых в некоторый момент времени фаза волны имеет одно и то же значение.

Скоростью волны называют скорость, с которой движется фронт волны.

Формула для вычисления фазовой скорости распространения продольных волн

Скорость распространения продольных упругих волн в однородных в газах или жидкостях может быть вычислена как:

где $K$ — модуль объемной упругости вещества; $rho =const$ — плотность среды. В газах формула (4) выполняется, если избыточное давление много меньше, равновесного давление газа в невозмущенном состоянии.

Для нахождения скорости распространения продольных волн в газе применяют выражение:

где $gamma $ — показатель адиабаты; $p$ — давление газа.

Продольные механические волны могут распространяться в твердых телах, их фазовая скорость равна:

где $E$ — модуль Юнга вещества стержня.

s$ — фаза волны; $k=frac<2pi ><lambda >$ — волновое число; $lambda $ — длина волны; $omega $ — циклическая частота; $varphi $ — начальная фаза. Уравнению (1) в каждый момент времени соответствует только одна точка оси X координата которой, равна:

Разным значениям фазы волны $Ф_s$ соответствуют разные волновые поверхности, каждая из которых в одномерной волне превращается в точку. Из формулы (2) видно, что волновые поверхности перемещаются в среде со скоростью:

где $T$ — период колебаний точек в волне.

Если волны гармонические, то скорость движения волновой поверхности равна скорости распространения волны. Скорость, которую определяет выражение (3) является фазовой скоростью.

Фазовая скорость гармонической волны совпадает со скорость распространения энергии волны.

Скорость волны зависит от вещества, в котором распространяется волна и типа волны. Скорость волны — это не то же самое, что скорость колебания частиц среды в волне.

Скорость и длина волны

Каждая волна распространяется с какой-то скоростью. Под скоростью волны понимают скорость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с.

Физика 9 класс (Урок№12 — Волновые явления. Длина волны. Скорость распространения волн.)

Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Помимо скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Формула длины волны

Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

где

v — скорость волны; T — период колебаний в волне; λ (греческая буква «ламбда») — длина волны.

Выбрав направление распространения волны за направление оси x и обозначив через y координату колеблющихся в волне частиц, можно построить график волны. График синусоидальной волны (при фиксированном времени t) изображен на рисунке 45. Расстояние между соседними гребнями (или впадинами) на этом графике совпадает с длиной волны λ.
График волны
Формула (22.1) выражает связь длины волны с ее скоростью и периодом. Учитывая, что период колебаний в волне обратно пропорционален частоте, т. е. T = 1/ν, можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:
Формула скорости волны

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.

Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

1. Что понимают под скоростью волны? 2. Что такое длина волны? 3. Как длина волны связана со скоростью и периодом колебаний в волне? 4. Как длина волны связана со скоростью и частотой колебаний в волне? 5. Какие из следующих характеристик волны изменяются при переходе волны из одной среды в другую: а) частота; б) период; в) скорость; г) длина волны?

Экспериментальное задание. Налейте воду в ванну и посредством ритмичных касаний воды пальцем (или линейкой) создайте на ее поверхности волны. Используя разную частоту колебаний (например, касаясь воды один и два раза в секунду), обратите внимание на расстояние между соседними гребнями волн. При какой частоте колебаний длина волны больше?

Длина волны: определение и расчет

Конечно, у любой волны есть характеристики. Одна из таких характеристик — это длина волны.

  • λ — длина волны [м]

Длиной волны называется расстояние между двумя точками этой волны, колеблющимися в одной фазе. Если проще, то это расстояние между двумя «гребнями».

Еще длиной волны можно назвать расстояние, пройденное волной, за один период колебания.

Период — это время, за которое происходит одно колебание. То есть, если дано время распространения волны и количество колебаний, можно рассчитать период.

Формула периода колебания волны

T = t/N

N — количество колебаний [—]

Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.

Выберите идеального репетитора по физике
15 000+ проверенных преподавателей со средним рейтингом 4,8. Учтём ваш график и цель обучения

Выберите идеального репетитора по физике

Связь со скоростью

Чтобы вывести формулу скорости через длину волны, нужно вспомнить формулу скорости из кинематики — это раздел физики, в котором изучается движение тел без учета внешнего воздействия).

Формула скорости

𝑣 = S/t

Переходя к волнам, можно провести следующие аналогии:

  • путь — длина волны
  • время — период

А для скорости даже аналогия не нужна — скорость и в Африке скорость.

Формула скорости волны

𝑣 = λ/T

λ — длина волны [м]

Задачка

Лодка совершает колебания на волнах. За 40 с она совершила 10 колебаний. Какова скорость распространения волны, если расстояние между соседними гребнями волны равно 1 м?

Решение:



    Возьмем формулу скорости:

Распространение колебаний

Далеко не любые колебательные процессы приводят к распространению волн. Колебательная система представляет собой лишь источник колебаний. Для того, чтобы эти колебания могли распространяться, необходимо также существование упругой среды без разрывов, связанной с этим источником. Природа упругих сил может быть различна в различных средах, однако, их наличие обязательно, без этого второго условия, распространение волн в среде невозможно.

Распространение волн на поверхности воды

Каждая точка среды, через которую проходит волна, в простейшем случае начинает колебаться по гармоническому закону (в более сложных случаях колебания точек можно представить в виде суммы таких функций с различными параметрами):

Однако, уравнение колебания соседних точек будет немного различаться. Во-первых, чем дальше точка расположена от источника колебаний, тем больше потерь происходит по пути, и тем меньше амплитуда колебаний (параметр $A$ в представленной формуле). Однако, когда потери невелики, заметное изменение амплитуды происходит лишь на больших расстояниях.

Гораздо важнее другое отличие – отличие фазы колебаний (параметр $varphi$ ) для различных точек. По мере удаления от источника колебаний, фаза плавно изменяется, постоянно увеличиваясь. Поскольку синус – круговая функция, то рано или поздно разность фаз между двумя точками становится равной $<2pi>$, а значит, эти две точки колеблются одинаково – синфазно. Для более далеких точек фаза увеличивается дальше, и для точек, разность фаз которых составит $<4pi>$ колебания опять будут синфазны.

Таким образом, по мере удаления от источника колебаний в среде будет ряд точек, колеблющихся в одной фазе. Минимальное расстояние между двумя такими точками называется длиной волны. Она обозначается греческой буквой $lambda$ (лямбда).

Длина волны

Скорость распространение волн

Плавное изменение фазы колебаний по мере удаления от источника колебаний можно представить в виде распространения этих колебаний, и определить скорость этого распространения. Разность фаз между ближайшими точками, колеблющимися синфазно, составляет $2pi$, это один период колебаний. А значит, волна проходит расстояние между этими точками за время одного периода $T$. Зная длину волны – можно вычислить скорость ее распространения:

Иногда известен не период, а частота колебаний $nu$. В этом случае формула скорости распространения волны примет вид:

Если среда первоначально была спокойна, то начало возмущений (иногда его называют «фронт волны») будет удаляться от источника колебаний как раз с указанной скоростью.

Длина волны. Связь длины волны со скоростью её распространения и периодом (частотой)

Скорость волны зависит от строения вещества и взаимодействия между её молекулами (атомами). Поэтому в различных средах скорость одной и той же волны будет отличаться.

Помимо скорости, важной характеристикой волны является длина волны.

Длина волны — расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Рассмотрим процесс передачи колебаний от точки к точке при распространении поперечной волны.

Используется модель, в которой частицы среды заменяют шариками. Для удобства их можно пронумеровать (рис. (1)).

Частицы среды связаны между собой межмолекулярными силами взаимодействия, поэтому волна передаётся от одной частицы к другой.

1.png

Рис. (1). Модель упругой среды для демонстрации колебаний

Отклоним первый шарик от положения равновесия. Силы притяжения передадут движение второму, третьему шарику. Каждый элемент вещества (молекула, атом) повторит движение первой частицы с запаздыванием, которые называют сдвигом фазы. Это запаздывание зависит от расстояния, на котором находится рассматриваемый шарик по отношению к первому шарику.

Предположим, что первый шарик достиг максимального смещения от положения равновесия (рис. (2)). В этот момент четвёртый шарик только начнет движение, следовательно, он отстаёт от первого на (1/4) колебания.

2.png

Рис. (2). Изображение максимального смещения от положения равновесия первого шарика

В момент времени, когда смещение четвертого шарика будет наибольшим (рис. (3)), седьмой шарик будет отставать от него на (1/4) колебания. А если рассмотреть отставание седьмого шарика от первого, то оно составляет (1/2) колебания.

3.png

Рис. (3). Изображение максимального смещения от положения равновесия четвёртого шарика
Между седьмым и четвёртым шариком, а также седьмым и десятым (1/4) часть колебания (рис. (4)).

4.png

Рис. (4). Изображение максимального смещения от положения равновесия седьмого шарика

Первый и тринадцатый шарик совершают одно колебание, то есть двигаются в одной фазе (рис. (5)). Это значит, что между ними все шарики с первого по двенадцатый проходят полный колебательный процесс или составляют одну волну.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.

Период колебаний математического маятника:

Частота колебаний математического маятника:

Циклическая частота колебаний математического маятника:

Максимальное значение скорости колебаний математического маятника:

Максимальное значение ускорения колебаний математического маятника:

Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:

Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:

Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:

Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​ ( h ) ​, определяется по формуле:

где ​ ( l ) ​ – длина нити, ​ ( alpha ) ​ – угол отклонения от вертикали.

Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.

Период колебаний пружинного маятника:

Частота колебаний пружинного маятника:

Циклическая частота колебаний пружинного маятника:

Максимальное значение скорости колебаний пружинного маятника:

Максимальное значение ускорения колебаний пружинного маятника:

Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:

Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Виды механических волн

По характеру колебаний частиц среды относительно положения равновесия различают два вида волн:

  1. Поперечная волна— волна, при которой частицы среды колеблются перпендикулярно направлению распространения этой волны.
  2. Продольная волна— волна, при которой частицы среды колеблются параллельно направлению распространения этой волны.

Волны, распространяющиеся вдоль резинового шнура, являются поперечными (см. рисунок ниже). Чтобы появилась волна, нужно взять конец шнура, прикрепленного к вертикальной опоре, и дернуть его. При этом волна побежит к вертикальной опоре, а сам шнур будет менять свою форму. Каждая частица шнура станет совершать колебания относительно своего неизмененного положения равновесия сверху вниз (перпендикулярно направлению распространения волны).

Рассмотрим поперечные волны подробнее. Каждый участок шнура обладает массой и упругостью. При деформации шнура в любом его сечении появляются силы упругости. Эти силы стремятся возвратить шнур в исходное положение. Благодаря инертности участок колеблющегося шнура не останавливается в положении равновесия, а проходит его, продолжая двигаться до тех пор, пока силы упругости не остановят этот участок в момент максимального отклонения от положения равновесия.

На рисунках а, б, в, г, д и е изображен процесс распространения поперечной волны. На них показаны положения частиц среды в последовательные моменты времени.

Теперь рассмотрим распространение в среде продольной волны. Такую волну можно наблюдать, собрав установку из цепочки массивных шариков, связанных пружинками. Шары подвешены так, чтобы они могли колебаться только вдоль цепочки (см. рисунок ниже).

Если первый шар привести в колебательное движение, то вдоль цепочки побежит продольная волна, состоящая из чередующихся уплотнений и разрежений шаров. Уплотнения и разрежения (см. рисунок ниже) появляются вследствие горизонтальных колебаний шаров у положения равновесия. Волна также распространяется горизонтально.

Физические характеристики волны

Обратимся к рисункам д, е еще раз. Видно, что когда частица 1 находится в положении равновесия и движется вверх, частица 13 тоже находится в положении равновесия и движется вверх. Спустя четверть период частица 1 будет максимально отклонена от положения равновесия, ровно, как и частица 13. Так как частицы 1 и 13 движутся одинаково, говорят, что колебания этих частиц происходят в одинаковых фазах. Расстояние между этими частицами называют длиной волны.

Внимание! В действительности частица 13 отстает по фазе от частицы 1 на 2π. Но поскольку такая разница фаз не приводит к различию в состояниях колеблющихся частиц, можно считать, что частицы колеблются в одинаковых фазах.

Длина волны — расстояние между двумя ближайшими точками волны, колеблющимися в одинаковых фазах.

Длина волны обозначается как λ (лямбда). Единица измерения длины волны — метр (м).

Согласно рисунку е, в одинаковых фазах колеблются частицы 1 и 13, 2 и 14, 3 и 15, 4 и 16. Поэтому расстояния между этими частицами равно длине волны. Но частицы 1 и 7, находящиеся на расстоянии λ 2 . . , колеблются в противоположных фазах. Посмотрите на рисунок д: когда 1 частица находится в положении равновесия и движется вверх, частица 7 находится в положении равновесия и движется низ. На рисунке е обе частицы максимально отклонены от положения равновесия, но в противоположных направлениях.

Волна распространяется на расстояние λ за время, равное периоду колебаний частиц вещества. Зная расстояние, на которое распространилась волна, и время, в течение которого это распространение происходило, можно найти скорость волны:

Но мы знаем, что период равен величине, обратной частоте колебаний:

Тогда скорость распространения волны равна:

Скорость волны равна произведению длины волны на частоту колебаний.

При распространении волны мы имеем дело с периодичностью двоякого рода:

  1. Во-первых, каждая частица среды совершает периодические колебания во времени. В случае гармонических колебаний (эти колебания происходят по синусоидальному или косинусоидальному закону) частота постоянна и амплитуда одинакова во всех точках. Колебания отличаются только фазами.
  2. Во-вторых, в данный момент времени форма волны повторяется в пространстве через отрезки длиной λ вдоль линии распространения волны. На рисунке ниже показан профиль волны в определенный момент времени (сплошная линия). С течением времени вся эта картина перемещается со скоростью v направо. Спустя промежуток времени ∆t волна будет иметь вид, изображенный на том же рисунке прерывистой линией.

Пример №1. Определите скорость распространение волны на поверхности воды, если расстояние между ее гребнями равно 1 метру. Учитывайте, что мимо наблюдателя за 5 секунд прошло 10 волн.

Обычно под волной на воде люди понимают гребни — частицы воды, максимально отклоненные от положения равновесия. Расстояние между гребнями равно длине волны. Чтобы найти скорость распространения волны, нужно знать частоту колебания молекул воды. Ее можно вычислить по следующей формуле:

где n — количество «волн», прошедших мимо наблюдателя.

Тогда скорость волны равна:

v = λ ν = λ n t . . = 1 · 10 5 . . = 2 ( м с . . )

Скорость и длина волны

Wave.png

Если бросить камень в воду, то в месте его падения частицы воды начинают колебаться, двигаясь вверх и вниз. Соседние частицы, связанные с ними силами сцепления, также приходят в колебание. Однако для передачи колебания соседним частицам требуется некоторое время. То есть, чем дальше отстоят частицы от места, где начались колебания, тем позже эти частицы будут вовлечены в колебательное движение. Таким образом, от места падения камня волна бежит во все стороны с определенной скоростью, которая называется скоростью распространения волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней. Если считать скорость волны постоянной, то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

Так как период колебаний в волне обратно пропорционален частоте,

то можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

Калькулятор ниже позволяет по двум известным параметрам формулы посчитать неизвестный.

Оцените статью
TutShema
Добавить комментарий