Как формулируется закон ома для цепи переменного тока

В данной статье мы рассмотрим основные типы сопротивления в электрических цепях переменного тока – активное, емкостное и индуктивное – и их влияние на работу цепей.

Основы сопротивления: активное, емкостное и индуктивное. Закон Ома в переменных токах обновлено: 24 августа, 2023 автором: Научные Статьи.Ру

Помощь в написании работы

Сопротивление является основной характеристикой электрических цепей. В данной статье рассмотрим различные типы сопротивления: активное, емкостное и индуктивное.

Нужна помощь в написании работы?

Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.

Закон Ома для переменного тока

Протекающий по обмотке переменный ток создает магнитный поток. Этот магнитный поток точно так же, как и ток, изменяет свою силу и направление. При изменении магнитного потока по закону индукции в обмотке создается ЭДС (электродвижущая сила). Направление ЭДС противоположно полярности подаваемого напряжения. Это явление называется самоиндукцией.

Самоиндукция в цепи переменного тока частично проявляется в сдвиге по фазе между током и напряжением и частично — в падении индуктивного напряжения. Сопротивление цепи переменного тока становится значительно выше рассчитанного или измеренного сопротивления этой же цепи постоянному току.

Сдвиг по фазе между током и напряжением обозначается углом φ. Индуктивное сопротивление (реактивное) обозначается X, активное сопротивление — R, кажущееся сопротивление цепи или проводника — Z. Полное сопротивление (импеданс) вычисляется по формуле:

Где: Z — полное сопротивление, Ом R — активное сопротивление, Ом

Закон Ома для цепи переменного тока :

U — напряжение или разность потенциалов,

Z = Re−iδ — комплексное сопротивление (импеданс),

R = (Ra2 + Rr2)1/2 — полное сопротивление,

Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),

Rа — активное (омическое) сопротивление, не зависящее от частоты,

δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.

Реактивное сопротивление – это сопротивление катушек индуктивности (дросселей) и конденсаторов. Величина реактивного сопротивления уже зависит от частоты тока. Так на постоянном токе реактивное сопротивление конденсатора устремляется к бесконечности, а дросселя наоборот – к нулю (без учета активной составляющей сопротивления провода).

С изменением частоты тока электрическое сопротивление конденсатора изменяется, по закону:

где Xc – сопротивление, Ом; f – частота, Гц; С – емкость, Ф.

Закон Ома для последовательной цепи переменного тока. 11 класс.

Электрическое сопротивление конденсатора переменному току можно измерить. Зная сопротивление и частоту тока, легко по формуле вычислить емкость. Кроме того, если в электрической цепи стоит конденсатор происходит сдвиг фаз напряжения и тока. Причем ток опережает напряжение на величину 90°.

Реактивное сопротивление катушки индуктивности с увеличением частоты возрастает:

где XL – сопротивление катушки, Ом; f – частота, Гц; L – индуктивность, Гн.

Индуктивность дросселя легко вычисляется по известному сопротивлению и заданной частоте тока. При этом фазы напряжения и тока на катушке индуктивности сдвигаются относительно друг друга, и теперь ток отстает от напряжения на 90°.

Для измерения реактивного сопротивления емкости и индуктивности потребуется, прежде всего, переменный ток синусоидальной формы. С задачей программного генератора с легкостью может справиться звуковая плата компьютера. Другая проблема – определение величины электрического сопротивления измеряемого элемента. Но оказывается и эту задачу можно решить программным путем, с помощью той же звуковой платы, не прибегая к специальным аналого-цифровым преобразователям

16.полное сопротивление импеданс — полное электрическое сопротивление цепи переменному току.

Абсолютная величина (модуль) электрического импеданса определяется выражением

Полная цепь переменного тока — это цепь из генератора, а также R, C, и L

элементов, взятых в разных сочетаниях и количествах.

Для разбора проходящих в электрических цепях процессов используют полные

последовательные и параллельные цепи.

Последовательная цепь — это такая цепь, где все элементы могут быть

соединены последовательно, один за другим.

В параллельной цепи R, C, L элементы соединены параллельно.

Особенности полной цепи:

1.Соблюдается закон Ома

2.Полная цепь оказывает переменному току сопротивление. Это сопротивление

называется полным (мнимым, кажущимся) или импедансом.

3.Импеданс зависит от сопротивления всех элементов цепи, обозначается Z и

вычисляется не простым, а геометрическим (векторным) суммированием. Для

последовательно соединенных элементов формула импеданса имеет следующее

Z — импеданс последовательной цепи,

R — активное сопротивление,

XL – индуктивное и XC – ёмкостное сопротивление,

L — индуктивность катушки (генри),

C — ёмкость конденсатора (фарад).

импеданс изменяется с изменением частоты

тока, на котором проводится измерение: при увеличении частоты реактивная составляющая импеданса уменьшается. Зависимость импеданса от частоты тока называется дисперсией импеданса.

Изменение импеданса с частотой обусловлено также зависимостью поляризации от периода Т переменного тока. Если время, в течение которого

электрическое поле направлено в одну сторону (Т/2), больше времени релаксации τ какого-либо вида поляризации, то поляризация достигает своего наибольшего значения, и до тех пор, пока T/2>τ, эффективная диэлектрическая проницаемость и проводимость объекта не будут изменяться с частотой. Если же при увеличении частоты полупериод T/2 переменного тока становится меньше времени релаксации, то поляризация не успевает достигнуть своего максимального значения. После этого диэлектрическая проницаемость начинает

уменьшаться с частотой, а проводимость — возрастать.

Закон Ома для переменного тока

После открытия в 1831 году Фарадеем электромагнитной индукции, появились первые генераторы постоянного, а после и переменного тока. Преимущество последних заключается в том, что переменный ток передается потребителю с меньшими потерями.

При увеличении напряжения в цепи, ток будет увеличиваться аналогично случаю с постоянным током. Но в цепи переменного тока сопротивление оказывается катушкой индуктивности и конденсатор. Основываясь на этом, запишем закон Ома для переменного тока: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

закон Ома для переменного тока

где

  • I [А] – сила тока,
  • U [В] – напряжение,
  • Z [Ом] – полное сопротивление цепи.

Полное сопротивление цепи

В общем случае полное сопротивление цепи переменного тока (рис. 1) состоит из активного (R [Ом]), индуктивного, и емкостного сопротивлений. Иными словами, ток в цепи переменного тока зависит не только от активного омического сопротивления, но и от величины емкости (C [Ф]) и индуктивности (L [Гн]). Полное сопротивление цепи переменного тока можно вычислить по формуле:

полное сопротивление цепи переменного токагде

  • индуктивное сопротивление— индуктивное сопротивление, оказываемое переменному току, обусловленное индуктивностью электрической цепи, создается катушкой.
  • емкостное сопротивление— емкостное сопротивление, создается конденсатором.

Полное сопротивление цепи переменного тока можно изобразить графически как гипотенузу прямоугольного треугольника, у которого катетами являются активное и индуктивное сопротивления.

Рис.1. Треугольник сопротивлений

треугольник сопротивлений

Учитывая последние равенства, запишем формулу закона Ома для переменного тока:

Закон Ома для переменного тока

– амплитудное значение силы тока.

Последовательная электрическая цепь

Рис.2. Последовательная электрическая цепь из R, L, C элементов.

Из опыта можно определить, что в такой цепи колебания тока и напряжения не совпадают по фазе, а разность фаз между этими величинами зависит от индуктивности катушки и емкости конденсатора:

Решение задач:

Цепь переменного тока состоит из последовательно соединенных конденсатора (емкостью С), катушки индуктивности (L) и активного сопротивления (R). На зажимы цепи подается действующее напряжение (U), частота которого ν. Чему равно действующее значение силы тока в цепи?

Закон Ома для цепи переменного тока. Мощность

Указанные выше формулы внешне могут напоминать закон Ома на участке цепи постоянного тока, но стоит заметить, что в этом случае вместо величин постоянных токов и напряжений на участке цепи, в них входят амплитудные значения напряжений и переменных токов.

Формулы, указанные выше, выражают собой закон Ома для переменного тока, который содержит один из элементов R , L и C .

Мощность переменного тока на участке цепи Закон Ома в условиях параллельной RLC-цепиОпределение 9

При параллельном резонансе ( ω 2 = 1 L C ) полное сопротивление цепи принимает свое максимальное значение, которое эквивалентно активному сопротивлению резистора:

А значение фазового сдвига φ между током и напряжением при параллельном резонансе равняется нулю.

Активное сопротивление

Пусть источник переменного тока включен в цепь, в которой индуктивностью и емкостью можно пренебречь. Переменный ток изменяется в соответствии с законом.

Закон Ома для переменного тока

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

Сколько в ампере ватт

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ/$ следует, что

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^м^$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^$) Ом$·$м$м^2$/м, диэлектрики — в $10^-10^$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при

Ёмкостное сопротивление

Допустим, что в участок цепи включен конденсатор емкости $С$, а $R=0$ и $L=0$. Будем считать силу тока ($I$) положительной, если она имеет направление, которое указано на рис. 2. Пусть заряд на конденсаторе равен $q$.

Закон Ома для переменного тока

Мы можем использовать следующие соотношения:

Если $I(t)$ определена уравнением (1), то заряд выражен как:

где $q_0$ произвольный постоянный заряд конденсатора, который не связан с колебаниями тока, поэтому можем допустить, что $q_0=0.$ Получим напряжение равно:

Формула (6) показывает, что на конденсаторе колебания напряжения отстают от колебаний силы тока по фазе на $frac.$ Амплитуда напряжения на емкости равна:

Величину $X_C=frac$ называют реактивным емкостным сопротивлением (емкостным сопротивлением, кажущимся сопротивлением емкости). Если ток постоянный, то $X_C=infty $. Это значит, что постоянный ток не течет через конденсатор. Из определения емкостного сопротивления видно, что при больших частотах колебаний, малые емкости являются небольшими сопротивлениями переменного тока.

Требуется консультация по учебной работе?Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос

°$С:

Зависимость удельного сопротивления проводников от температуры выражается формулой:

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=(/)K^$. Для растворов электролитов $α < 0$. Например, для $10%$-го раствора поваренной соли $α=-0.02K^$. Для константана (сплава меди с никелем) $α=10^K^$.

Зависимость сопротивления проводника от температуры используется в термометрах сопротивления.

Как формулируется закон ома для цепи переменного тока

В § 2.3 были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:

Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений .

Соотношения (*) выражают закон Ома для участка цепи переменного тока , содержащего один из элементов , и . Физические величины , и ω называются активным сопротивлением резистора , емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки .

При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения: . Практический интерес представляет среднее за период переменного тока значение мощности

Здесь 0 и 0 – амплитудные значения тока и напряжения на данном участке цепи, φ – фазовый сдвиг между током и напряжением. Черта означает знак усреднения. Если участок цепи содержит только резистор с сопротивлением , то фазовый сдвиг :

Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения:

Средняя мощность переменного тока на участке цепи, содержащем резистор, равна

Если участок цепи содержит только конденсатор емкости , то фазовый сдвиг между током и напряжением Поэтому

Аналогично можно показать, что .

Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника и током возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать

Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна

Как видно из векторной диаграммы, , поэтому Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.

В § 2.3 было выведено соотношение между амплитудами тока 0 и напряжения 0 для последовательной -цепи:

называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде

Это соотношение называют законом Ома для цепи переменного тока . Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).

Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный -контур, подключенный к внешнему источнику переменного тока (рис. 2.4.1).

Рисунок 2.4.1.

Параллельный -контур

При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах , и одно и то же и равно напряжению внешнего источника. Токи, текущие в разных ветвях цепи, отличаются не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Поэтому полное сопротивление цепи нельзя вычислить по законам параллельного соединения цепей постоянного тока . Векторная диаграмма для параллельного -контура изображена на рис. 2.4.2.

Рисунок 2.4.2.

Векторная диаграмма для параллельного RLC-контура

Из диаграммы следует:

Поэтому полное сопротивление параллельного -контура выражается соотношением

При параллельном резонансе () полное сопротивление цепи принимает максимальное значение, равное активному сопротивлению резистора:

Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.

Оптимизация режимов работы энергосистем

При управлении режимами энергосистем также учитывают реактивные мощности, чтобы обеспечить эффективную загрузку оборудования. Для анализа используют полный закон Ома применительно к сложным многофазным цепям переменного тока.

Современные программные комплексы для расчета электрических цепей автоматически учитывают реактивные сопротивления на основе закона Ома формула. Это позволяет быстро моделировать сложные схемы переменного тока.

Связь с другими разделами физики

Помимо технических приложений, закон ома сопротивление для переменного тока используется в радиофизике, квантовой механике, теории колебаний и других областях. Например, для описания колебательного контура или движения заряженных частиц в переменных электромагнитных полях.

С учетом современных знаний о строении вещества исследователи продолжают уточнять закон ома для цепи переменного тока с использованием квантовой теории и нанотехнологий. Это может привести к новым открытиям в области электротехники и электроники.

Оцените статью
TutShema
Добавить комментарий