Электрический ток это кратко

Открытия, связанные с электричеством, кардинально изменили нашу жизнь. Используя электрический ток как источник энергии, человечество сделало прорыв в технологиях, которые облегчили наше существование. Сегодня электричество приводит в движение токарные станки, автомобили, управляет роботизированной техникой, обеспечивает связь. Этот список можно продолжать очень долго. Даже трудно назвать отрасль, где можно обойтись без электроэнергии.

В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.

Электрическую энергию можно доставить практически везде:

  • к производственному цеху;
  • квартире;
  • на поле;
  • в шахту, под воду и т. д.

Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?

Что такое электрический ток?

Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

Как всё начиналось

Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений. А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами. Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Опыт с заряженными телами

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

Определение

В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

Что такое электрический ток?

Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами. На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно. То есть электрофорная машина является источником электричества.

Электрофорная машина

Источники тока

Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

Электрический ток. Электрическая цепь. Гальванические элементы. Аккумуляторы

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.

Обрати внимание!
Условия существования электрического тока:

• наличие свободных электрических зарядов;
• наличие электрического поля, которое обеспечивает движение зарядов;
• замкнутая электрическая цепь.

Электрическое поле создают источники электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.

Существуют различные виды источников тока:

• Механический источник тока — механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.

скачанные файлы.jpg

Рис. (1). Электрофорная машина

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.
Рис. (2). Тепловой источник тока

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

• Световой источник тока — энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.

Рис. (3). Световой источник тока

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

• Химический источник тока — внутренняя энергия преобразуется в электрическую в результате протекающих химических реакций.
Примером такого источника является гальванический элемент.

Рис. (4). Химический источник тока

Угольный стержень У (с металлической крышкой М) помещают в полотняный мешочек, наполненный смесью оксида марганца с углём С, а затем в цинковый сосуд Ц. Оставшееся пространство заполняют желеобразным раствором соли Р. При протекании химической реакции цинк заряжается отрицательно (отрицательный электрод), а угольный стержень — положительно (положительный электрод). Между заряженным угольным стержнем и цинковым сосудом возникает электрическое поле.

Из нескольких гальванических элементов можно составить батарею.

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой — отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В металлогидридных аккумуляторах отрицательный электрод состоит из порошкообразного железа, а положительный из гидроокиси никеля с добавками графита и окиси бария. Электролитом служит раствор едкого калия с добавками моногидрата лития.
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие.

Элементы электрической цепи:

  • источник напряжения;
  • потребители: резисторы, лампы, реостат.
  • измерительные приборы: вольтметр, амперметр, ваттметр, омметр;
  • соединительные провода;
  • ключи для размыкания и переключения цепи.

Для поддержания электрического тока в цепи необходимы источники электрической энергии: источники электрического тока, источники электрического напряжения.

Источник ЭДС (идеальный источник напряжения) — двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением.

Источник электрического тока — двухполюсник, создающий ток постоянного значения, не зависящего от значения сопротивления на подключенной нагрузке. Внутреннее сопротивление такого источника приближается к бесконечности.

Необходимое условие существования тока — замкнутая цепь! Это означает, что все элементы цепи должны быть проводниками электричества и в цепи не должно быть разрывов. В случае размыкания цепи ток прекращает течь. Именно размыкание цепи и лежит в основе работы всех реле, кнопок и выключателей.

Порядок сборки электрической цепи указывается на специальном чертеже, который принято называть схемой.

Что такое электрический ток

Когда мы произносим словосочетание «электрический ток», то обычно имеем ввиду самые разные проявления электричества. Ток течет по проводам высоковольтных линий электропередач, ток вращает стартер и заряжает аккумулятор в нашем автомобиле, молния во время грозы — это тоже электрический ток.

Что такое электрический ток

Электролиз, электросварка, искры статического электричества на расческе, по спирали лампы накаливания течет ток, и даже в крохотном карманном фонарике через светодиод течет крохотный ток. Что и говорить о нашем сердце, которое также генерирует небольшой электрический ток, особенно это заметно во время прохождения процедуры ЭКГ.

В физике электрическим током принято называть упорядоченное движение заряженных частиц и в принципе любых носителей электрического заряда. Движущийся вокруг атомного ядра электрон — это тоже ток. И заряженная эбонитовая палочка, если держать ее в руке и двигать из стороны в сторону — также станет источником тока: не равный нулю заряд есть и он движется.

Все, что окружает человека, и он сам — это материальный мир, или материя, которая существует в различных формах. Одна из форм материи, из которой состоят все тела в природе (вода, различные металлы и т. д.), называется веществом.

Вещества, которые невозможно химическим путем разложить на отдельные химические элементы, называются простыми. Вещество, состоящее из нескольких элементов, называется сложным.

Все вещества состоят из мельчайших частиц-молекул, которые в свою очередь образуются из еще более меньших частиц, называемых атомами. В то же время в состав атомов входят другие, еще меньшие частицы, обладающие различными свойствами: ядро и электроны.

При бездействии сил электрического поля электроны в веществах находятся в беспорядочном движении. Происходит это потому, что во многих веществах, главным образом в металлах, электроны недостаточно сильно удерживаются ядром и могут свободно передвигаться от одного атома к другому.

Когда силы электрического поля начинают действовать, движение электронов принимает упорядоченное (направленное) состояние, возникает электрический ток. Отсюда электрическим током называется упорядоченное (направленное) движение электронов.

Аналоговый амперметр

При упорядоченном движении электроны движутся от того места, где имеется их избыток, туда, где ощущается их недостаток, от минуса к плюсу. Однако исторически в электротехнике условно принято считать, что ток идет от плюса к минусу.

Скорость распределения тока близка к скорости света — 300000 км в секунду. Это не значит, что такой скоростью обладает каждый электрон в отдельности.

Скорость электрона в проводнике составляет лишь доли сантиметра или миллиметра в секунду. Но в результате действия электрического поля ток, возникающий в одном конце провода, мгновенно вызывает прохождение тока по всему проводнику.

Аналогичное явление происходит, например, в трубе, заполненной водой, на одном конце которой находится насос. В момент подачи насосом воды в трубу давление, возникающее в воде, мгновенно передается вдоль трубы от одних частиц к другим. Вода приходит в движение — течет.

Однако частицы воды, добавляемые насосом, дойдут до противоположного конца трубы гораздо позже момента начала вытекания ее из трубы. Численно ток измеряется количеством электрических зарядов, которые проходят через поперечное сечение провода в одну секунду.

Физические аналогии между течением воды в системе водоснабжения и электрическим током: Электропроводка и трубопровод

Электропроводка и трубопровод: аналогии и различия

Постоянный ток

Ток течет по проводам бытовых электроприборов питающихся от розетки — электроны перемещаются туда-сюда 50 раз за секунду — это называется переменным током.

Высокочастотные сигналы внутри электронных приборов — это тоже электрический ток, поскольку электроны и дырки (носители положительного заряда) перемещаются внутри схемы.

Любой электрический ток порождает своим существованием магнитное поле. Вокруг проводника с током оно обязательно присутствует. Не существует магнитного поля без тока и тока без магнитного поля.

Даже если магнитного поля вокруг тока не наблюдается, это лишь значит что магнитные поля двух токов в момент наблюдения взаимно скомпенсированы, как в двужильном проводе любого электрического чайника — переменные токи в каждый момент направлены в противоположные стороны и текут параллельно друг другу — их магнитные поля друг друга нейтрализуют. Это называется принципом наложения (суперпозиции) магнитных полей.

Практически для существования электрического тока необходимо наличие электрического поля, потенциального или вихревого. Исключительно редко заряды перемещаются чисто механическим образом (как например в генераторе Ван Де Граафа — наэлектризованной резиновой лентой).

Генератор Ван Де Граафа:

Генератор Ван Де Граафа

Если электрический ток представляет собой направленное движение электрически заряженных частиц, то нужно найти ответ на вопрос, что приводит эти частицы в движение.

Причиной возникновения и поддержания электрического тока является электрическое поле. Величина этого поля определяется той работой, которую совершает сила электрического поля, перемещая 1 кулон электричества от одного конца проводника до другого.

Если рассмотреть некоторую замкнутую систему, в которой циркулирует вода, то в этой системе должен быть насос, который сообщает частицам воды энергию и заставляет их двигаться по трубопроводам. Частицы воды в процессе их циркуляции отдают полученную ими энергию (затрачивая ее, например, на преодоление сил трения). Когда же частицы воды вновь возвращаются к насосу, то в отличие от своего исходного состояния они обладают меньшей энергией.

Если уподобить электроны частицам воды, то аналогично можно представить себе процессы, протекающие в электрической цепи. В этом случае водяному насосу будет соответствовать некий «насос для электронов», или источник электрической энергии, а трубопроводам будут соответствовать провода. Следует особо подчеркнуть то обстоятельство, что в электрической цепи электроны не производятся, а просто в каждом проводнике имеются свободные высокоподвижные электроны.

Если на некотором участке цепи носители зарядов получают энергию, то принято говорить, что этот участок цепи — источник, развивающий электродвижущую силу (ЭДС).

Итак, в электрическом поле заряженная частица испытывает действие электрической силы, которая у источников тока называется ЭДС — электродвижущая сила. ЭДС измеряется в вольтах как и напряжение между двумя точками электрической цепи.

Электродвижущая сила является причиной, приводящей в движение электрические заряды, и определяется энергией, которая затрачивается на перемещение единичного электрического заряда.

В то же время источник энергии, перемещая заряд по замкнутой цепи, обладающей сопротивлением, совершает работу как на внутреннем участке цепи, так и на внешнем. Следовательно, на этих участках будут возникать напряжения, которые называются падением напряжения на определенном участке.

Поэтому понятие «электродвижущая сила» включает в себя также сумму падений напряжения на внешнем и внутреннем участках цепи источника электроэнергии.

Напряжение и ток — два электрические явления, взаимосвязанные друг с другом. Ток будет протекать по проводнику лишь при наличии разности потенциалов между концами проводника. Чем больше напряжение приложенное к потребителю — тем больший электрический ток это напряжение способно вызвать.

Переменное напряжение порождает в проводнике, к которому оно приложено, переменный ток, поскольку электрическое поле, приложенное к носителям заряда, будет в этом случае также переменным. Постоянное напряжение — условие существования в проводнике тока постоянного.

Высокочастотное напряжение (изменяющее свое направление сотни тысяч раз за секунду) также способствует переменному току в проводниках, но чем выше частота — тем меньше носителей заряда участвуют в создании тока в толще проводника, поскольку электрическое поле действующее на заряженные частицы вытесняется ближе к поверхности, и получается что ток течет не в проводнике, а по его поверхности. Это называется скин-эффект.

Вакуумные лампы

Электрический ток может существовать в вакууме, в проводниках, в электролитах, в полупроводниках и даже в диэлектриках (ток смещения). Правда в диэлектриках постоянного тока быть не может, поскольку в них заряды не имеют возможности к свободному перемещению, а способны лишь смещаться в пределах внутримолекулярного расстояния от своего первоначального положения под действием приложенного электрического поля.

Настоящий электрический ток всегда предполагает возможность свободного перемещения электрических зарядов под действием электрического поля. Смотрите — условия существования электрического тока.

В металлических проводниках электрический ток представляет собой движение «свободных» электронов, причем электроны движутся в направлении, противоположном условному направлению тока (т. к. за направление тока условно принято направления движения зарядов).

Электрический ток в газах представляет собой движение положительных ионов в одном направлении, а электронов (и отрицательных ионов) в другом направлении. Наконец, электрический ток в электролитах представляет собой движение существующих в жидкости положительных и отрицательных ионов в противоположных направлениях.

Сила электрического тока — количество электричества, прошедшее через все поперечное сечение тока за 1 сек., зависит, с одной стороны, от количества движущихся зарядов, а с другой — от средней скорости их регулярного движения.

В металлических проводниках количество движущихся зарядов (свободных электронов) чрезвычайно велико (порядка 10 23 в 1 см 3 ), но зато средняя скорость регулярного движения очень мала (при самых сильных токах, которые может выдержать проводник, эта средняя скорость имеет величину порядка сантиметра в секунду). Обычно несколько меньше количество движущихся зарядов в жидкостях и соответственно их средние скорости несколько больше.

В газах же вследствие их гораздо меньшей плотности и вследствие того, что только небольшая доля всех молекул газа оказывается ионизированной, количество движущихся зарядов гораздо меньше, но зато средние скорости движения электронов и ионов гораздо больше, чем в металлических проводниках, и достигают сотен и даже тысяч километров в секунду.

Понятие «электрический ток» ввел итальянский физик Алессандро Вольта. Электрический ток, или по его версии «электрический флюид» протекал в замкнутой цепи, соединяющей металлическим проводником крайние кружки вольтова столба.

«Вотльтов столб» (1800 г.) был первый источник электричества неэлектростатического типа (источник постоянного электрического тока), который состоял из чередующихся между собой медных и цинковых кружков, разделенных суконными прокладками, смоченными подкисленной водой или кислотой.

Вольтов столб

Существование неизменного высокого потенциала на вольтовом столбе было явлением для того времени совершенно новым. Это был первый химический источник электричества, потенциал которого был постоянен во времени и не требовал каких-либо приемов электризации для его возобновления.

Вольтов столб, составленный из большого количества кружков, имел на концах достаточно высокий потенциал, который можно было обнаружить не только измерительными приборами (в частности электроскопом), но и прикоснувшись к крайним кружкам руками. При этом ощущался сильный электрический удар, как от лейденской банки.

Открытие Вольты очень быстро распространилось в физике, стало предметом дальнейших исследований. В 1800 г. ученые-физики с помощью вольтова столба обнаружили электрохимическое действие тока, и в частности разложение под действием тока воды на кислород и водород. Опыты с гальваническими элементами позволили обнаружить, кроме химических, и другие новые свойства тока, в том числе его тепловое и магнитное действие.

Французский физик А. М. Ампер посвятил ряд своих работ изучению связи электрического тока и магнетизма. Он обнаружил, что два проводника с током испытывают взаимное воздействие — притяжение или отталкивание в зависимости от направления в них токов. Своими работами он заложил основы электродинамики.

Он предложил термин «электрический ток» и ввел понятие о его направлении, совпадающем с движением положительного электричества. В честь А. М. Ампера названа единица измерения электрического тока. Ампер является одной из семи основных единиц системы СИ.

Электрический ток обладает рядом свойств, которые могут быть эффективно использованы во многих практических случаях. К таким свойствам относятся трансформация простыми техническими средствами энергии электрического тока в энергию других видов (тепловую, световую, механическую, химическую) и возможность передачи ее на большие расстояния, быстрота распространения.

Характеристики электрического тока

Исторически так сложилось, что направление движения положительных зарядов в проводнике совпадает с направлением тока. Если естественными носителями электрического тока являются отрицательно заряженные электроны, то направление тока будет противоположно по направлению положительно заряженных частиц.

Скорость заряженных частиц напрямую зависит от заряда и массы частиц, материала проводника, температуры внешней среды и приложенной разности потенциалов. Скорость целенаправленного движения составляет величину, которая значительно меньше скорости света. Электроны за одну секунду перемещаются в проводнике за счет упорядоченного движения меньше, чем на одну десятую миллиметра. Но, несмотря на это, скорость распространения тока приравнивается скорости света и скорости распространения фронта электромагнитных волн.

То место, где меняется скорость перемещения электронов после изменения напряжения, перемещается со скоростью распространение электромагнитного колебания.

Основные типы проводников

В проводниках в отличие от диэлектриков есть свободные носители некомпенсированных зарядов. Они под воздействием силы электрических потенциалов приходят в движение и формируют электрический ток.

Вольтамперная характеристика или, иными словами, зависимость силы тока от напряжения является главной характеристикой проводника. Для электролитов и металлических проводников она принимает простейший вид: сила тока прямо пропорциональна напряжению. Это закон Ома.

В металлах носителями тока являются электроны проводимости, которые рассматриваются как электронный газ. В них отчетливо проявляются квантовые свойства вырожденного газа.

Плазма – это ионизированный газ. В данном случае при помощи ионов и свободных электронов переносится электрический заряд. Свободные электроны образуются под воздействием ультрафиолетового и рентгеновского излучения или нагревания.

Электролиты – это твердые или жидкие системы и вещества, в которых присутствует заметная концентрация ионов, что обуславливает прохождение электрического тока. В процессе электролитической диссоциации образуются ионы. Сопротивление электролитов при нагревании падает из-за роста числа молекул, которые разложились на ионы. В результате прохождения электрического тока сквозь электролит, ионы приближаются к электродам и нейтрализуются, оседая на них.

Физические законы электролиза Фарадея определяют массу вещества, который выделился на электродах. Вообще работы Фарадея на разные темы, связанные с электричеством, отличаются глубиной и масштабностью. Он провел большое число опытов и выступил с огромным количеством докладов.

Кратко упомянем, что также существует электрический ток электронов в вакууме, применяемый в электронно-лучевых приборах.

Сила тока и электрический заряд

В системе СИ основной единицей тока является ампер (A — в честь французского физика и математика Ампер Андре Мари). В формулах и расчетах сила тока обозначается буквой ( I ).

Силой тока принято считать отношение электрического заряда (q), прошедшего через поперечное сечение проводника, ко времени его прохождения (t).

Поперечное сечение проводника это площадь среза металлической части провода, по которому передается электрический ток (проводника). Измеряется в миллиметрах.

Схема поперечного сечения

Например, кабель ВВГ (винил-винил-голый) — первый кабель имеет две жилы сечением по 1,5 миллиметра.

Кабель ВВГ

Так же существует единица электрического заряда – Кулон (Кл). По сути это единица, которая определяет электрический ток, проходящий через поперечное сечение проводника при силе тока 1А за 1 секунду.

Амперметр

Амперметр это прибор, который предназначен для измерения силы тока в цепи. У большинства людей, чья работа не связана с электричеством, есть такой прибор как мультиметр. Именно он играет роль амперметра. Обычно он позволяет проводить измерения постоянного тока до 10 ампер.

Мультиметр-амперметр

На этом все основы электрического тока подходят к концу. Читайте другие материалы и задавайте вопросы в комментариях.

Анатолий Бузов

Анатолий Бузов / об авторе

Обучаю HTML, CSS, PHP. Создаю и продвигаю сайты, скрипты и программы. Занимаюсь информационной безопасностью. Рассмотрю различные виды сотрудничества.

Характеристики

Классификация тока

Свойства электрического тока характеризуются следующими величинами:

Сила и плотность тока.

Силой тока характеризуется интенсивность, с которой движутся электрические заряды в проводнике, а также количество проходящих частиц через плоскости поперечных сечений проводников. Единица измерения — ампер A.

Плотность электрического тока является векторной величиной, где направление вектора соответствует направлению, в котором двигаются положительные заряды. Единица измерения — A/м2.

Величины используются для формулирования знаменитого закона Ома, где на определенном участке электрической цепи для выражения разницы потенциалов (или напряжения) используется соотношение: U=I*R (U-напряжение, I-сила тока, R-сопротивление).

Мощность

Работа электрических сил направлена против реактивного и активного сопротивлений. При пассивном сопротивлении происходит преобразование электроэнергии в тепловую. Электрическая мощность — это действие электричества в установленный промежуток времени. Единица измерения: ватт (Вт).

Частота

Эта характеристика указывает на изменение количества периодов (колебаний) за определенные единицы времени. Единица измерения — герц Гц. Один герц равняется одному колебанию в секунду. Промышленному току свойственна стандартная частота в 50 Гц.

Ток смещения

Это условное название, так как в нем заряд не переносится. В то же время, токи проводимости и смещения определяют зависимость от них магнитного поля. Явным примером является конструкция конденсатором: даже если между обкладками конденсационного устройства при зарядке/разрядке заряды никак не перемещаются, наблюдается протекание тока смещения через конденсатор, тем самым обеспечивая замыкание электрической цепи.

Лицензированная электролаборатория компании ТМ Электро проведёт качественные испытания Ваших электросетей.

Ваш браузер не поддерживается

Интернет-сервис Студворк построен на передовых, современных технологиях и не может гарантировать полную поддержку текущего браузера.

Chrome

Установить новый браузер

    Google Chrome

Yandex browser

Скачать
Яндекс Браузер

Opera

Скачать
Opera

Firefox

Скачать
Firefox

Edge

Скачать
Microsoft Edge

Нажимая на эту кнопку, вы соглашаетесь с тем, что сайт в вашем браузере может отображаться некорректно. Связаться с техподдержкой

Работаем по будням с 8.00 до 18.00 по МСК

Оцените статью
TutShema
Добавить комментарий