Электрический ток что это

Ток — это направленное движение заряженных частиц. Ток в проводниках создается перемещением электронов, так как они могут двигаться в материале свободно, в отличие от зафиксированных в узлах решеток атомов.

Сила тока равна величине заряда, проходящего в единицу времени через проводник

(I) — сила тока, (lbrack Arbrack) ;

(q) — перемещенный через проводник заряд, (lbrack Клrbrack) ;

(t) — время перемещения заряда, (lbrack сrbrack) ;

Проводник, через который проходит заряд, оказывает определенное сопротивление перемещению этого заряда. Связь между разностью потенциалов на концах проводника (напряжением), силой тока в участке цепи, и сопротивлением цепи носит название закона Ома.

Закон Ома для участка цепи имеет вид

(I) — сила тока (lbrack Arbrack) ;

(U) — напряжение (разность потенциалов) (lbrack Brbrack) ;

(R) — сопротивление (lbrack Омrbrack) ;

Сопротивление проводника — это его физическая характеристика, не зависящая от силы тока в цепи или напряжения, и зависящая только от размеров проводника и материала из которого он изготовлен.

Сопротивление проводника равно

(R) — сопротивление (lbrack Омrbrack) ;

(I) — длина проводника (lbrack мrbrack) ;

(rho) — удельное сопротивление проводника (lbrack Ом cdot мrbrack) ;

(S) — площадь поперечного сечения проводника (lbrack м^rbrack)

Параллельное и последовательное соединение проводников.

При последовательном соединении общее сопротивление равно сумме сопротивлений всех источников сопротивления (R = R_ + R_ + R_ + ldots + R_ + R_) , где

R — общее сопротивление всех источников сопротивления, (lbrack Омrbrack)

сопротивление каждого из источников сопротивления в цепи, (lbrack Омrbrack)

(n) — количество всех источников сопротивления в цепи.

Сила тока на каждом из источников сопротивления при последовательном соединении, и общая сила тока на участке цепи, одинаковы ( I = I_ = I_ = I_ = ldots = I_ = I_) , где

(I) — сила тока на участке цепи, (lbrack Arbrack)

(I_,I_,I_,ldots,I_,I_ -) сила тока на каждом из источников сопротивления в цепи, (lbrack Arbrack)

Напряжение в участке цепи равно сумме напряжений на каждом из источников сопротивления

(U = U_ + U_ + U_ + ldots + U_ + U_) , где

(U) — напряжение на участке цепи, (lbrack Brbrack)

(U_,U_,U_,ldots,U_,U_ -) напряжение на каждом из источников сопротивления в цепи, (lbrack Brbrack)

При параллельном соединении общее сопротивление источников сопротивления вычисляется как (frac = frac + frac> + frac> + ldots + frac> + frac>) .

Общее сопротивление двух параллельно соединенных резисторов равно

Сила тока в цепи при параллельном соединении равна (I = I_ + I_ + I_ + ldots + I_ + I_) .

Что такое электрический ток?

Напряжение в цепи и на каждом из источников сопротивления одинаковы ( U = U_ = U_ = U_ = ldots = U_ = U_) .

Заряженные частицы в цепи всегда стремятся перемещаться по пути наименьшего сопротивления. Если хотя бы одна из ветвей цепи не нагружена сопротивлением — то весь ток будет перемещаться по ней. На рисунке показан пример цепи, у которой одна из ветвей — верхняя — не имеет сопротивления. Именно по ней пройдет весь ток, а общее сопротивление цепи будет равно нулю.

Электрический ток

Природные объекты, эпохи, процессы, события

Электри́ческий ток, упорядоченное (направленное) движение заряженных частиц. В различных средах электрический ток может создаваться разными носителями электрического заряда . Так, например, в металлах электрический ток обусловлен движением свободных электронов (электронов проводимости), в полупроводниках – свободных электронов и положительно заряженных дырок, в электролитах – положительных и отрицательных ионов . Электрический ток характеризуют вектором плотности электрического тока j = n q v j = nqv j = n q v , где n n n – концентрация заряженных частиц, q q q – заряд одной частицы, v v v – средняя скорость упорядоченного движения частиц. Направление j j j совпадает с направлением скорости положительных зарядов. Электрический ток через произвольную поверхность S S S можно также характеризовать силой тока I I I , которая равна: I = ∫ s j n d S I = int_j_ dS I = ∫ s ​ j n ​ d S , где j n j_n j n ​ – проекция вектора j j j на нормаль к элементу поверхности d S dS d S ; интегрирование производится по всей поверхности S S S .

Различают электрический ток проводимости и конвекционный. Первый – это движение заряженных частиц внутри макроскопических тел, второй – движение макроскопических заряженных тел как целого (например, заряженных частиц пыли или маленьких капель). Различают постоянный электрический ток (сила тока и его направление не изменяются со временем) и переменный (сила тока или его направление зависят от времени). Частным случаем переменного электрического тока является квазистационарный электрический ток – относительно медленно изменяющийся переменный электрический ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов ( закон Ома , правила Кирхгофа ).

Опубликовано 29 марта 2023 г. в 16:23 (GMT+3). Последнее обновление 29 марта 2023 г. в 16:23 (GMT+3). Связаться с редакцией

Информация

Природные объекты, эпохи, процессы, события

Области знаний: Электрический ток

Электрический ток. Электрическая цепь. Гальванические элементы. Аккумуляторы

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.

Обрати внимание!
Условия существования электрического тока:

• наличие свободных электрических зарядов;
• наличие электрического поля, которое обеспечивает движение зарядов;
• замкнутая электрическая цепь.

Электрическое поле создают источники электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.

Существуют различные виды источников тока:

• Механический источник тока — механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.

скачанные файлы.jpg

Рис. (1). Электрофорная машина

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.
Рис. (2). Тепловой источник тока

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

• Световой источник тока — энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.

Рис. (3). Световой источник тока

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

• Химический источник тока — внутренняя энергия преобразуется в электрическую в результате протекающих химических реакций.
Примером такого источника является гальванический элемент.

Рис. (4). Химический источник тока

Угольный стержень У (с металлической крышкой М) помещают в полотняный мешочек, наполненный смесью оксида марганца с углём С, а затем в цинковый сосуд Ц. Оставшееся пространство заполняют желеобразным раствором соли Р. При протекании химической реакции цинк заряжается отрицательно (отрицательный электрод), а угольный стержень — положительно (положительный электрод). Между заряженным угольным стержнем и цинковым сосудом возникает электрическое поле.

Из нескольких гальванических элементов можно составить батарею.

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой — отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В металлогидридных аккумуляторах отрицательный электрод состоит из порошкообразного железа, а положительный из гидроокиси никеля с добавками графита и окиси бария. Электролитом служит раствор едкого калия с добавками моногидрата лития.
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие.

Элементы электрической цепи:

  • источник напряжения;
  • потребители: резисторы, лампы, реостат.
  • измерительные приборы: вольтметр, амперметр, ваттметр, омметр;
  • соединительные провода;
  • ключи для размыкания и переключения цепи.

Для поддержания электрического тока в цепи необходимы источники электрической энергии: источники электрического тока, источники электрического напряжения.

Источник ЭДС (идеальный источник напряжения) — двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением.

Источник электрического тока — двухполюсник, создающий ток постоянного значения, не зависящего от значения сопротивления на подключенной нагрузке. Внутреннее сопротивление такого источника приближается к бесконечности.

Необходимое условие существования тока — замкнутая цепь! Это означает, что все элементы цепи должны быть проводниками электричества и в цепи не должно быть разрывов. В случае размыкания цепи ток прекращает течь. Именно размыкание цепи и лежит в основе работы всех реле, кнопок и выключателей.

Порядок сборки электрической цепи указывается на специальном чертеже, который принято называть схемой.

Виды тока

По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону. Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного. Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.

Классификация переменного тока

Классифицировать изменяющиеся во времени токи можно следующим образом:

  1. Синусоидальный, подчиняющийся синусоидальной функции во времени.
  2. квазистационарный – переменный, медленно изменяющийся во времени. Обычные промышленные токи являются квазистационарными.
  3. Высокочастотный – частота которого превышает десятки кГц.
  4. Пульсирующий – импульс которого периодически изменяется.

Различают также вихревые токи, которые возникают в проводнике при изменении магнитного потока. Блуждающие токи Фуко, как их ещё называют, не текут по проводам, а образуют вихревые контуры. Индукционный ток имеет ту же природу что и вихревой.

Дрейфовая скорость электронов

Электричество по металлическому проводнику распространяется со скоростью света. Но это не означает, что заряженные частицы несутся от полюса к полюсу с такой же скоростью. Электроны в металлических проводниках встречают на своём пути сопротивление атомов, поэтому их реальное перемещение составляет всего 0,1 мм за секунду. Реальная, упорядоченная скорость перемещения электронов в проводнике называется дрейфовой.

Если замкнуть проводником полюсы источника питания, то вокруг проводника молниеносно образуется электрическое поле. Чем больше ЭДС источников, тем сильнее проявляется напряжённость электрического поля. Реагируя на напряжённость, заряженные частицы вмиг принимают упорядоченное движение и начинают дрейфовать.

Направление электрического тока

Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

Классификация тока

При движении заряженных частиц внутри макроскопического тела энергия называется электрическим током проводимости. Если же наблюдается движение макроскопических заряженных тел (к примеру — дождевые капли, имеющие заряд), ток будет конвекционным.

Основная классификация электрического тока предусматривает использование формулировки постоянного и переменного тока. Также рассмотрим и другие виды:

  • Постоянный ток — его направление и величина остаются неизменными во времени. Такой ток бывает пульсирующим, однонаправленным или выпрямленным переменным.
  • Переменный ток — изменяется во времени, под этим обозначением подразумевается любой вид непостоянного тока.
  • Периодический ток — его мгновенные значения, как правило, повторяются в неизменной последовательности через разные временные промежутки.
  • Синусоидальный ток — является периодическим электротоком, выполняющим синусоидальную функцию времени. Это означает, что происходит изменение электростатического потенциала каждого конца в проводнике по отношению к потенциалу другого конца — с отрицательного на положительный и наоборот. Это способствует возникновению тока, который непрерывно изменяет свое направление и амплитудное значение. Квазистационарный ток — это переменный вид тока, который изменяется довольно медленно. Его мгновенные значения достаточно точно выполняют соответствуют законам постоянных токов (Ома, правилам Кирхгофа, и др.). Как и в постоянном токе, в квазистационарном имеется одинаковая сила тока на абсолютно всех сечениях электроцепи.
  • Высокочастотный ток — относится к переменному току, частота которого превышает несколько десятков герц. Если волна излучения имеет длину, близкую к размерам элементов, входящих в электрическую цепь, могут быть нарушены условия квазистационарности. Следовательно, для проектировки таких цепе необходим особый подход.
  • Пульсирующий ток — представляется периодическим электротоком, в котором за определенный период среднее значение равно нулю.
  • Однонаправленный ток — является током, постоянно сохраняющим свое первоначальное направление.

Характеристики

Классификация тока

Свойства электрического тока характеризуются следующими величинами:

Сила и плотность тока.

Силой тока характеризуется интенсивность, с которой движутся электрические заряды в проводнике, а также количество проходящих частиц через плоскости поперечных сечений проводников. Единица измерения — ампер A.

Плотность электрического тока является векторной величиной, где направление вектора соответствует направлению, в котором двигаются положительные заряды. Единица измерения — A/м2.

Величины используются для формулирования знаменитого закона Ома, где на определенном участке электрической цепи для выражения разницы потенциалов (или напряжения) используется соотношение: U=I*R (U-напряжение, I-сила тока, R-сопротивление).

Мощность

Работа электрических сил направлена против реактивного и активного сопротивлений. При пассивном сопротивлении происходит преобразование электроэнергии в тепловую. Электрическая мощность — это действие электричества в установленный промежуток времени. Единица измерения: ватт (Вт).

Частота

Эта характеристика указывает на изменение количества периодов (колебаний) за определенные единицы времени. Единица измерения — герц Гц. Один герц равняется одному колебанию в секунду. Промышленному току свойственна стандартная частота в 50 Гц.

Ток смещения

Это условное название, так как в нем заряд не переносится. В то же время, токи проводимости и смещения определяют зависимость от них магнитного поля. Явным примером является конструкция конденсатором: даже если между обкладками конденсационного устройства при зарядке/разрядке заряды никак не перемещаются, наблюдается протекание тока смещения через конденсатор, тем самым обеспечивая замыкание электрической цепи.

Лицензированная электролаборатория компании ТМ Электро проведёт качественные испытания Ваших электросетей.

Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.

что такое амперметр

Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.

1)Основные параметры электрического тока

Электрическим током называется движение электрических зарядов (электронов в металлах, электронов и ионов в жидкостях и газах) под действием электрического поля.

Движение положительных зарядов по полю эквивалентно движению отрицательных зарядов против поля.

За направление тока принято направление положительного заряда.

Условия существования электрического тока (в дальнейшем просто тока в проводнике):

а) наличие свободных заряженных частиц;

б) наличие электрического поля (разности потенциалов на концах проводника).

Действия электрического тока:

а) ТЕПЛОВОЕ – нагревание проводника, по которому идет ток;

б) ХИМИЧЕСКОЕ – изменение химического состава проводника (электролиз и сопутствующие ему явления);

в) МАГНИТНОЕ – силовое воздействие на другие проводники с током и намагниченные тела (магнетики).

Основные характеристики электрического тока:

а) сила тока I – численно равна количеству электричества (заряду) Q, протекающего по проводнику за время t:

I =

В зависимости от величины и направления токи бывают: постоянные, переменные, пульсирующие и другие. Будем рассматривать только постоянные токи I = const.

Ток измеряется прибором – амперметром, который включается в цепь последовательно проводнику (сопротивлению).

б) напряжение U – равно разности потенциалов на участке цепи.

Напряжение измеряется прибором – вольтметром, который включается параллельно проводнику (сопротивлению);

в) сопротивление R проводника.

1. От длины проводника ℓ, его сечения S и материала (характеризуется удельным сопротивлением проводника ρ):

2. От температуры t°С (или Т): R = R0 (1 + αt),

где R0 – сопротивление проводника при 0°С,

α – температурный коэффициент сопротивления.

3. Проводники могут соединяться последовательно и параллельно.

г) плотность тока j – физическая величина, определяемая силой тока I проходящего через единицу площади поперечного сечения S проводника:

j =

д) электрическая сила (ЭДС) ε – физическая величина, определяемая работой сторонних (неэлектрических) сил Аст по перемещению единичного положительного заряда q:

Если в цепи на носители тока действуют силы электрического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приводит к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способно создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.

Источники тока также можно соединить последовательно и параллельно:

1. При последовательном соединении источников:

где ε – ЭДС одного источника,

r – сопротивление одного источника,

n – число источников.

2. При параллельном соединении n одинаковых источников:

Элементы электрических цепей и сами электрические цепи изображают схематически следующим образом:

– внешнее сопротивление проводника (участок электрической цепи без ЭДС)

– амперметр и его включение в цепь;

– вольтметр и его включение в цепь;

– источник тока (источник ЭДС) с внутренним сопротивлением.

– последовательное соединение сопротивлений и источников тока.

– параллельное соединение сопротивлений и источников тока.

– полная электрическая цепь.

Для решения задач по расчету электрических цепей используется закон Ома:

1. Закон Ома для участка цепи (без ЭДС):

или ,

где – удельная проводимость проводника,

Е – напряженность электрического поля в проводнике.

2. Закон Ома для полной цепи:

где R – внешнее сопротивление цепи,

r – внутреннее сопротивление источника тока,

R + r – называется полным сопротивлением цепи.

а) если R → 0, источник замкнут накоротко:

где Iкз – ток короткого замыкания;

б) если R → ∞, цепь разомкнута:

т.е. ЭДС источника численно равна напряжению на его зажимах при разомкнутой внешней цепи.

Для расчетов полных электрических цепей полезно знать следующие величины:

а) полная мощность, развиваемая источником:

б) полезная мощность (выделяемая на внешнем сопротивлении):

г) КПД источника:

Электрический ток I, проходя по участку цепи без ЭДС с сопротивлением R, совершает работу А по перемещению электрических зарядов, которую можно рассчитать по формуле:

,

где U – напряжение на участке цепи,

t – время пропускания тока.

Мощность N тока, согласно определения, равна:

При протекании тока по проводнику он нагревается и в нем выделяется количество теплоты Q, которое без учета потерь рассчитывается по закону Джоуля-Ленца:

Электрический ток – это проходящие через проводник электроны, несущие отрицательный заряд. Объем этого заряда или, иными словами, количество электричества характеризует силу тока. Мы знаем, что сила тока одинакова во всех местах цепи.

Электроны не могут исчезать или «спрыгивать» с проводов и нагрузки. Поэтому, силу тока мы можем измерить в любом местеэлектрической цепи. Однако, будет ли одинаковым действие тока на разные участки этой цепи? Давайте разберемся.

Проходя по проводам, ток лишь слегка их нагревает, однако не совершает при этом большой работы. Проходя же через спираль электрической лампочки, ток не просто сильно нагревает ее, он нагревает ее до такой степени, что она, раскаляясь, начинает светиться. То есть в данном случае ток совершает механическую работу, и довольно приличную работу. Ток тратит свою энергию. Электроны в том же количестве продолжают бежать дальше, но энергии у них уже поменьше.

Оцените статью
TutShema
Добавить комментарий