Из какого полюса магнита выходят линии магнитного поля

Найдите правильный ответ на вопрос ✅ «Из какого полюса постоянного магнита выходят линии магнитного поля? В какой входят? . » по предмету Физика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.

Похожие вопросы по физике

Что такое линии магнитного поля? что выбрано за направление этих линий? из какого полюса постоянного магнита выходят линии магнитного поля? в какой входят?

Полюсами магнита называют . 1) Середину магнита 2) то место магнита, где действие магнитного поля сильнее всего 3) то место магнита, где действие магнитного поля слабее всего 4) Среднюю и крайние точки магнита

Почему линии магнитного поля земли выходят из южного полюса, а линии магнитного поля магнита из северного полюса

1. За направление магнитных линий принято направление 1) южного полюса магнитной стрелки в каждой точке поля 2) северного полюса магнитной стрелки в каждой точке поля 3) магнитного поля Земли 4) с запада на восток 2.

В какой полюс постоянного магнита входят линии магнитного поля? а) из северного б) из южного в) не входят из полюсов

Помогите с ответом
решить уравнение 2 целых 2.9:y=3 целых 19.27:3 целых 1.3
Нет ответа

дачнику до железной платформы нужно пройти 2 км. с какой средней скоростью нужно идти. чтобы успеть на электр-ку которая прибудет на платформу через полчаса? запиши ответ с помощью знака > или равно, обозначив средн. скорость буквой U

Из какого полюса постоянного магнита выходят линии магнитного поля? В какой входят?

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,662
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Как определять полюса магнита и увидеть магнитное поле

Основные признаки и свойства магнитных линий

Магнитное поле существует вокруг постоянных магнитов (полосовых, дугообразных или иной формы) и вокруг металлического провода, по которому течет электрический ток.

Магнитное поле изображается в виде магнитных линий или линий магнитной индукции. Линия магнитной индукция — это некая геометрическая кривая, в любой точке которой вектор (направление) магнитной индукции направлен по касательной к ней.

Можно выделить основные свойства магнитных линий:

  • Магнитные линии непрерывны;
  • Магнитные линии всегда замкнуты. Это означает, что в природе не существует отдельных магнитных зарядов по аналогии с электрическими зарядами. Исследователи долго пытались найти этот заряд с помощью уменьшения (дробления) размеров постоянных магнитов. Но даже самый микроскопический магнитик всегда имеет два полюса: северный и южный;
  • Направление магнитных линий зависит от направления электрического тока;
  • Густота (плотность) линий соответствует величине поля: чем гуще (плотнее) расположены линии, тем больше значение поля.

Магнитные линии полосового магнита

С помощью простого эксперимент можно продемонстрировать свойства магнитных линий. Полосовой магнит кладется на горизонтальную поверхность, на него сверху — прозрачная (неметаллическая) пластинка, на которую насыпают мелкие железные опилки. Под действием магнита опилки намагничиваются и становятся как бы магнитными стрелочками. Видно, что опилки располагаются вдоль магнитных линий, которые выходят из северного полюса N и входят в южный полюс S. Гуще всего линии расположены в районе полюсов магнита.

Постоянные магниты и их магнитное поле .

Постоянные магниты и их магнитное поле

У каждого магнита есть южный (S) и северный (N) полюс.
Линии магнитного поля выходят из северного полюса магнита и входят в южный полюс.

Магнитное поле всегда направлено от северного полюса к южному:

Постоянные магниты и их магнитное поле

Компас изображается на рисунках вот так:

Постоянные магниты и их магнитное поле

В задачах его чаще называют магнитной стрелкой, здесь он сильно увеличен, закрашенная часть это северный полюс стрелки ( N )
а незакрашенная (левая) часть стрелки это ее южный полюс (S . )

Направление стрелки зависит от направления магнитного поля, в которое помещен компас.

Северный (закрашенный) полюс стрелки всегда направлен к южному полюсу ( S ) магнитного поля:

Постоянные магниты и их магнитное поле

Соответственно южный (незакрашенный) полюс стрелки всегда направлен к северному полюсу ( N ) магнитного поля:

Покажем направление стрелок компасов помещенных к южному и северному полюсам магнита:

Постоянные магниты и их магнитное поле

На каком рисунке правильно изображено направление магнитной стрелки компаса, помещенного в магнитное поле ?

Постоянные магниты и их магнитное поле

Показать ответ Показать решение Видеорешение

Северный (закрашенный) полюс стрелки всегда направлен к южному полюсу ( S ) магнитного поля:

Впринципе можно сказать, что северный (закрашенный) полюс стрелки компаса всегда сонаправлен с направлением магнитного поля.

Постоянные магниты и их магнитное поле

Постоянный магнит поставили вертикально на горизонтальную плоскую поверхность как показано на рисунке.
Куда будет направлен южный полюс магнитной стрелки компаса, если его поместить в точку ( A ), расположенную над магнитом циферблатом на наблюдателя?

Показать ответ Показать решение Видеорешение

Постоянные магниты и их магнитное поле

Магнитное поле в точке (A) направлено вверх, северный(закрашенный) полюс стрелки сонаправлен с полем он тоже направлен вверх, южный полюс стрелки направлен в противоположную сторону-вниз.

§ 34. Магнитное поле

Из курса физики 8 класса вы знаете, что магнитное поле порождается электрическим током. Оно существует, например, вокруг металлического проводника с током. При этом ток создаётся электронами, направленно движущимися вдоль проводника. Магнитное поле возникает и в том случае, когда ток проходит через раствор электролита, где носителями зарядов являются положительно и отрицательно заряженные ионы, движущиеся навстречу друг другу.

Поскольку электрический ток — это направленное движение заряженных частиц, то можно сказать, что магнитное поле создаётся движущимися заряженными частицами, как положительными, так и отрицательными.

Напомним, что, согласно гипотезе Ампера, в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи.

На рисунке 85 показано, что в постоянных магнитах эти элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.

Иллюстрация гипотезы Ампера

Рис. 85. Иллюстрация гипотезы Ампера

Для наглядного представления магнитного поля используются магнитные линии (их называют также линиями магнитного поля) 1 . Напомним, что магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещённые в магнитное поле.

Магнитную линию можно провести через любую точку пространства, в котором существует магнитное поле.

На рисунке 86 показано, что магнитная линия (как прямолинейная, так и криволинейная) проводится так, чтобы в любой точке этой линии касательная к ней совпадала с осью магнитной стрелки, помещённой в эту точку.

В любой точке магнитной линии касательная к ней совпадает с осью магнитной стрелки, помещённой в эту точку

Рис. 86. В любой точке магнитной линии касательная к ней совпадает с осью магнитной стрелки, помещённой в эту точку

Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.

Из рисунка 86 видно, что за направление магнитной линии в какой-либо её точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещённой в эту точку.

В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т. е. гуще, чем в тех местах, где поле слабее. Например, поле, изображённое на рисунке 87, слева сильнее, чем справа.

Магнитные линии ближе друг к другу в тех местах, где магнитное поле сильнее

Рис. 87. Магнитные линии ближе друг к другу в тех местах, где магнитное поле сильнее

Таким образом, по картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля (т. е. о том, в каких точках пространства поле действует на магнитную стрелку с большей силой, а в каких — с меньшей).

Рассмотрим картину линий магнитного поля постоянного полосового магнита (рис. 88). Из курса физики 8 класса вы знаете, что магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность.

Картина магнитного поля постоянного полосового магнита

Рис. 88. Картина магнитного поля постоянного полосового магнита

Магнитные линии магнитного поля,созданного прямолинейным проводником с током

Рис. 89. Магнитные линии магнитного поля,созданного прямолинейным проводником с током

Вне магнита магнитные линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает. Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на неё поле магнита. Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке.

Таким образом, сила, с которой поле полосового магнита действует на помещённую в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.

Такое поле называется неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.

Ещё одним примером неоднородного магнитного поля может служить поле вокруг прямолинейного проводника с током. На рисунке 89 изображён участок такого проводника, расположенный перпендикулярно плоскости чертежа. Кружочком обозначено сечение проводника. Точка означает, что ток направлен из-за чертежа к нам, как будто мы видим остриё стрелы, указывающей направление тока (ток, направленный от нас за чертёж, обозначают крестиком, как будто мы видим хвостовое оперение стрелы, направленной по току).

Из этого рисунка видно, что магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.

В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

На рисунке 90 показано магнитное поле, возникающее внутри соленоида — проволочной цилиндрической катушки с током. Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра (вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита). Из этого рисунка видно, что магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.

Магнитное поле соленоида

Рис. 90. Магнитное поле соленоида

Однородным является также поле внутри постоянного полосового магнита в центральной его части (см. рис. 88).

Для изображения магнитного поля пользуются следующим приёмом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертёж, то их изображают крестиками (рис. 91, а), а если из-за чертежа к нам — то точками (рис. 91, б). Как и в случае с током, каждый крестик — это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка — остриё стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с направлением магнитных линий).

Линии магнитного поля

Рис. 91. Линии магнитного поля, направленные перпендикулярно плоскости чертежа: а — от наблюдателя; б — к наблюдателю

Вопросы

  1. Что является источником магнитного поля?
  2. Чем создаётся магнитное поле постоянного магнита?
  3. Что такое магнитные линии? Что принимают за их направление в какой-либо её точке?
  4. Как располагаются магнитные стрелки в магнитном поле, линии которого прямолинейны; криволинейны?
  5. 0 чём можно судить по картине линий магнитного поля?
  6. Какое магнитное поле — однородное или неоднородное — образуется вокруг полосового магнита; вокруг прямолинейного проводника с током; внутри соленоида, длина которого значительно больше его диаметра?
  7. Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля; однородного магнитного поля?
  8. Чем отличается расположение магнитных линий в неоднородном и однородном магнитных полях?
  1. На рисунке 92 изображён участок ВС проводника с током. Вокруг него в одной из плоскостей показаны линии магнитного поля, созданного этим током. Существует ли магнитное поле в точке А?
  2. В какой из точек — А, М или N (см. рис. 92) — магнитное поле тока, протекающего по участку ВС проводника, будет действовать на магнитную стрелку с наибольшей силой; с наименьшей силой?

Рис. 92

Рис. 93

  1. Есть ли среди указанных на рисунке точек А, В, С и D такие, в которых поле действовало бы на магнитную стрелку с одинаковой по модулю силой? (АС = AD, АЕ = BE.) Если такие точки есть, укажите их.
  2. В какой из точек — А, В, С или D — поле действует на магнитную стрелку с наибольшей силой?
  3. Можно ли найти такие точки, в которых сила действия поля на магнитную стрелку была бы одинакова как по модулю, так и по направлению? Если да, то сделайте в тетради рисунок и укажите на нём хотя бы две пары таких точек.

1 В § 37 будет дано более точное название и определение этих линий.

Напряженность магнитного поля

Определение

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как → H . Единица измерения — А/м.

μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: → H ↑↑ → B .

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции → B направлен вверх.

  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции → B направлен вниз.

Способы обозначения направлений векторов:

Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

ГДЗ Физика 7-9 классы сборник вопросов и задач к учебнику Перышкина автор Марон. Магнитное поле. Направление линий магнитного поля тока.Действие магнитного поля на электрический ток. Индукция магнитного поля. Номер №1883

Задание рисунок 1

Укажите магнитные полюсы электромагнитов, изображённых на рисунке 292 .

рис. 292

reshalka.com

Магнитный поток

Плоский контур. Явление электромагнитной индукции

Как уже неоднократно упоминалось, магнитное поле порождается электрическим током. Тогда возможна ли ситуация, когда, наоборот магнитное поле породит электрический ток?

Из опытов установлено, что магнитное поле действительно может порождать ток. Один из самых простых опытов, доказывающих это, заключается в следующем: замкнутый плоский контур (все точки которого лежат в одной плоскости) из проводящего ток материала подключают к амперметру (чтобы зафиксировать ток) и затем вносят его в область U-образного магнита (см. рисунок 11).

16 provodyashcii kontur v magnitnom pole

Рисунок 11 – Проводящий контур в магнитном поле (К – контур, А – амперметр)

В ходе данного опыта было выяснено:

  • контур вносится в поле (в процессе движения) — амперметр фиксирует ток;
  • контур покоится внутри магнита –стрелка амперметра на нуле;
  • контур вынимают из области магнита — ток есть;
  • изменяют положение контура (поворачивают вокруг диаметра) — ток есть.

Что же изменялось в течение опыта? Если судить по рисунку, видно, что менялось количество магнитных линий, пересекающих контур (они изображены стрелками вниз). На языке физики говорят, что изменялся магнитный поток (Ф), пронизывающий замкнутый контур.

Магнитный поток обозначается буквой Ф и измеряется в Веберах.

Он прямо пропорционален количеству линий магнитного поля, пересекающих плоскость, ограниченную контуром.

Если в эксперименте использовать кольцо большего радиуса, его бы пронизывал больший поток (большая площадь контура могла бы захватить больше магнитных линий). Поле между ветвями U-образного магнита считается однородным.

Если оставить контур прежним, но взять более мощный магнит, поток Ф тоже станет больше (при более сильном поле магнитные линии рисуются гуще).

Если повернуть контур по диаметру, площадь, которой он «захватывает» магнитные линии уменьшится, а значит и магнитный поток уменьшится.

Получается, что поток Ф тем больше, чем больше величина магнитной индукции (В)и площадь контура. Помимо этого, он зависит от того, как расположен контур в поле.

Возникновение тока в замкнутом контуре (из проводящего материала) при изменении магнитного потока Ф, пронизывающего площадь, ограниченную контуром, называется явлением электромагнитной индукции. А возникающий ток – индукционным.

Подробным изучением этого явления занимался английский ученый М.Фарадей.

Направление индукционного тока

Правило Ленца

Индукционный ток и его направление изучались опытным путем. Был придуман прибор, состоящий из узкой перемычки, на концах которой закреплены кольца из легкого металла (чаще всего из алюминия): одно — сплошное, а второе – с разрезом. Перемычка с кольцами размещена на подставке, которая позволяет ей вращаться (см. рисунок 12). В ходе опыта прямоугольный магнит перемещают рядом с металлическими кольцами:

  • при приближении магнита к кольцу с разрезом, ничего не происходит;
  • при попытках внести магнит в сплошное кольцо, перемычка приходит в движение и поворачивается, кольцо пытается удалиться от магнита (результат не зависит от того, каким полюсом развернут магнит к кольцу);
  • если, придержав сплошное кольцо рукой, внести магнит, а затем, отпустив кольцо, попытаться удалить его из плоскости кольца – перемычка будет вращаться, а кольцо будет «догонять» магнит.

17 opyt indukcionnogo toka

Рисунок 12 – Установка для опыта по определению направления индукционного тока

Чем объясняются данные наблюдения?

В разорванном кольце ток пойти не может, поэтому ничего не происходит.

ris1 b vektor

В цельном кольце при попытках изменить магнитный поток (Ф) возникает ток, который порождает свое магнитное поле .

Если магнит пытаются приблизить к контуру-кольцу, плоскость, ограниченную кольцом, начинают пронизывать магнитные линии поля магнита ris2 b vektor. Кольцо, отталкиваясь от магнита, «сопротивляется» изменению магнитного потока, а индукционный ток в контуре порождает поле, линии которого противоположны линиям поля магнита: ris3 b vektor.

ris3 b vektor

Когда предварительно введенный в кольцо магнит пытаются достать, количество магнитных линий, пересекающих плоскость кольца, уменьшается. Индукционный ток в кольце порождает магнитное поле, линии которого будут «возмещать недостающее»: .

Русский ученый Э. Х. Ленц вывел следующее правило: индукционный ток в замкнутом контуре порождает магнитное поле, противодействующее изменению внешнего магнитного потока (Ф).

Оцените статью
TutShema
Добавить комментарий