Из каких основных частей состоят и как работают передатчик и приемник радиоволн

Для передачи информации с помощью радиоустройств из одного пункта управления на дру­гой, удаленных друг от друга, необходимо иметь приемопередающие устройства и меж­ду ними среду, способствующую распространению радиоволн.

Радиопередающее устройство объединяет радиопередатчик, антенную систему, управляющее устройство и электрические источники питания.

Рис.1.1. Блок-схема передающего устройства

Радиопередатчиком называется устройство, предназначенное для создания элек­трических колебаний высокой частоты и излучения их в пространстве в виде радио­волн.

Стабильные высокочастотные электрические колебания вырабатываются и поддерживаются незатухающими в задающем генераторе, с которого подаются на уси­литель мощности, где усиливаются по мощности.

Полезной информацией мы будем считать речь, музыку, изображение, теле­графную работу и т.д. Эта информация посредством микрофона, телеграфного, фототе­леграфного, буквопечатающего аппаратов или телеграфного ключа преобразуется в электрический ток низкий /звуковой/ частоты. Управляющее устройство, иначе оно называется модулятором, усиливает электрические колебания низкой /звуковой/ час­тоты и им воздействует на один из параметров /амплитуду, частоту/ высокочастотных колебаний /колебаний несущей/.

Процесс воздействия высокочастотных колебаний на высокочастотные, или процесс запечатления полезной информации в одном из параметров высокой частоты, называется модуляцией. В зависимости от того, на какой параметр высокочастотных колебаний будем воздействовать звуковой частотой, модуляция примет название ам­плитудной или частотной.

При амплитудной модуляции меняется амплитуда высокочастотных коле­баний, при частотной — частота. При этом другой параметр высокочастотных колебаний остается неизменным. В результате получаем высокочастотные модулированные коле­бания большой мощности.

Мощность этих колебаний и определяет мощность передатчика, что обяза­тельно указывается в тактике — технических данных. Модулированные колебания из усилителя мощности передаются в антенну, которая излучает их в виде радиоволн. Ан­тенна представляет собой открытый колебательный контур, обладающий свойствами преобразовывать энергию электрических модулированных колебаний в энергию элек­тромагнитных волн и излучать их в пространстве.

Антенны могут быть направленного и ненаправленного действия. Ненаправлен­ные антенны излучают энергию радиоволн равномерно во всех направлениях, /например, штыревые/. Направленные антенны излучают энергию радиоволн в опреде­ленном направлении, что зависит от конструктивного исполнения антенны. Направ­ленным излучением обладают такие антенны, как антенна-луч, антенна бегущей волны /АБВ/, симметричный диполь и др.

Радиопередатчики по видам работы подразделяются на радиотелефонные, ра­диотелеграфные, и фототелеграфные /факсимильные/.

При радиотелефонной передаче несущие высокочастотные колебания модули­руются напряжением низкой /звуковой/ частоты, источником которой является микро­фон. Радиотелефонная передача наиболее проста и удобна для управления боевыми действиями войск — путем передачи сигналов, команд, приказаний, распоряжений, до­несений и для личных переговоров командиров и офицеров штабов.

Особенности распространения радиоволн [ РадиолюбительTV 16]

При передаче и приеме радиотелефонных сигналов требуется сравнительно ши­рокая частотная полоса каналов связи, это ухудшает помехозащищенность приемной аппаратуры, уменьшает ее чувствительность и сокращает дальность связи.

Радиотелеграфная передача представляет собой передачу кодовых сигналов, состоящих из определенного сочетания электрических посылок различной длитель­ности /точки и тире/, обозначающих буквы и цифры.

Существует два способа радиотелеграфной работы: передача простым телеграф­ным ключом с приемом на слух — слуховая радиотелеграфная связь, и передача с помо­щью буквопечатающих аппаратов.

Управление высокочастотными колебаниями при радиотелеграфной работе называется манипуляцией. Она бывает амплитудной и частотной. При амплитудной манипуляции высокочастотные колебания, а, следовательно, и излучение радиоволн, прерываются в такт работы телеграфного ключа /аппарата/; при частотной манипуляции изменяется в небольших пределах несущая частота, что называ­ется девиацией.

Радиотелеграфные передачи более помехозащищены по сравнению с радио­телефонными, так как спектр излучаемых частот меньше, следовательно, полоса при­нимаемых приемником частот уже, а при узкой полосе частоты меньше помех. При телеграф­ной работе более эффективно используется мощность передатчика, повышается чувст­вительность приемника, чем обеспечивается большая дальность действия радиостанции.

Фототелеграфные /факсимильные/ передачи позволяют передавать неподвиж­ные изображения. Этот вид передачи позволяет ускорить доставку адресату подлинных боевых документов — топографических рабочих карт с нанесенной боевой обстановкой или решением командира на бой, чертежей, рисунков, рукописей, фотографий или дру­гих графических материалов, передача которых другими средствами связи требует много времени, а иногда и вообще невозможна.

Радиоприем — это процесс извлечения, преобразования и использования энергии электромагнитных волн, излучаемых радиопередатчиком. Устройства, предназначен­ные для этой цели, называются радиоприемными устройствами. Радиоприемники по своему устройству можно разделить на широковещательные, связные, радиолокацион­ные, радионавигационные, телевизионные и систем телеуправления. К основным каче­ственным показателям радиоприемников относятся: диапазон принимаемых радиоволн, чувствительность, избирательность, качество и точность воспроизведения принимае­мых сигналов.

По диапазонам принимаемых радиоволн приемники делятся на длинноволно­вые, коротковолновые, ультракоротковолновые. Обычно радиоприемники имеют один непрерывный диапазон частот, то есть их можно настраивать на любую волну в преде­лах этого диапазона. Но имеются приемники, предназначенные для работы на одной или нескольких фиксированных частотах /как и передатчики/.

Одним из важнейших показателей приемника является чувствительность, это означает, что он способен принимать очень слабые сигналы. Чувствительность опре­деляется наименьшей величиной сигнала /в микровольтах/ на входе, при которой на выходе приемника получается нормальная мощность для приведения в действие око­нечного воспроизводящего аппарата.

Чувствительность приемника определяет его усилительные свойства.

Важная характеристика приемника — избирательность. Это способность прием­ника выделить сигналы нужного радиопередатчика из всей массы сигналов других ра­ботающих радиостанций. Избирательность оценивается количеством и качеством колебательных контуров, имеющихся в приемнике.

Радиоприемник с высокой избирательностью ослабляет не только сигналы ме­шающих радиостанций, а также промышленные помехи и шумы, которые мешают ка­чественному радиоприему. Не менее важной характеристикой радиоприема является качество воспроизведения сигнала. При рассмотрении этой характеристики не следует забывать о качестве передачи и спектре частот, излучаемых радиопередатчиком. Каче­ство воспроизведения сигнала характеризуется полосой пропускания частот.

Существуют два типа приемников: прямого усиления и супергетеродинного ти­па. Широкое применение в настоящее время находят приемники супергетеродинного типа. Супергетеродинный приемник состоит из следующих элементов: антенны, входного устройства, усилителя высокой частоты, преобразователя /смесителя и гете­родина/, усилителя промежуточной частоты, детектора, усилителя низкой частоты и оконечного устройства — аппарата, воспроизводящего полезный сигнал в удобном для восприятия человеком виде /звук, свет и т.д./.На рис.1.2 представлена структурная схема супергетеродинного приемника. Рассмотрим по блок — схеме принцип работы супергетеродинного при­емника. Радиоволны, излученные радиопередатчиком, при своем распространении в окружающей среде пересекают антенну и наводят в ней электродвижущую силу /ЭДС/. Под действием ЭДС во входном колебательном контуре возникает высокочастотный /той же частоты, что и эдс/ ток, который в усилителе высокой частоты усиливается до величины, обеспечивающей нормальную работу преобразователя.

После УВЧ электрический ток, имеющий частоту передатчика fc, поступает в смеситель преобразователя. На второй вход смесителя поступают стабильные высо­кочастотные колебания от специального генератора называемого гетеродином.

В смесителе из двух высокочастотных колебаний получаются колебания проме­жуточной частоты. Процесс преобразования частоты можно выразить формулой: f пром. = fс — fгет,

где fc и frет — переменные величины. Следовательно, меняя эти параметры, изменением величин колебательных контуров можно получить постоянную промежуточную часто­ту /fпром/.

После преобразователя сигнал усиливается по амплитуде в усилителе промежу­точной частоты /УПЧ/.

Рис. 1.2 Блок-схема радиоприемного устройства

Преобразование частоты из высокой в промежуточную производится с целью по­лучения высокой чувствительности приемника и хорошей его избирательности.

Детектор — это устройство, преобразующее ток высокой частоты в ток низкой /звуковой/ частоты. Этот процесс называется детектированием, то есть процессом, об­ратным модуляции в передатчике.

После детектора ток звуковой частоты усиливается по мощности в каскадах усиления низкой частоты и поступает на оконечное устройство.

Оконечным устройством приемника являются аппараты, преобразующие энер­гию электрического тока в другой вид энергии, удобный для восприятия органами че­ловека /свет, звук/ либо для работы механических устройств /телеграфные аппара­ты, механические приборы для управления и т.д./.

Для питания войсковых радиостанций в зависимости от их мощностей, предна­значения и особенностей эксплуатации используются следующие источники тока: аккумуляторы, генераторы или электрическая сеть переменного тока.

Электрический аккумулятор служит для накопления электрической энергии путем превращения ее в химическую /при заряде/ и последующего преобразования хи­мической энергии в электрическую /при разряде/.

По составу электролита аккумуляторы делятся на две группы: щелочные /КОН/ и кислотные /H2SO4/. К группе щелочных относятся никель-кадмиевые, никель-железные, никель-цинковые, серебряно-цинковые и серебряно-кадмиевые аккумулято­ры.

К группе кислотных относятся свинцовые аккумуляторы. Наиболее распростра­нены свинцовые, никель-кадмиевые и серебряно-цинковые аккумуляторы. Перспек­тивными являются никель-железные аккумуляторы.

Свинцовые аккумуляторы применяются в основном в качестве стартерных для запуска двигателей внутреннего сгорания и для питания стационарных объектов связи.

Никель-кадмиевые и серебряно-цинковые аккумуляторы применяются для пи­тания переносных радиостанций, а никель-кадмиевые аккумуляторные батареи боль­шой емкости — для питания бортсети командно-штабных машин.

Никель-кадмиевые аккумуляторы имеют большой срок службы, механически прочны, вполне удовлетворительно работают в интервале температур от -20° до 40°С, не требовательны в эксплуатации и почти не вызывают коррозии аппаратуры. Они маркируются, например, 2НК-24, что означает: батарея состоит из двух никель-кадмиевых аккумуляторов, емкость 24 ампер-часа.

Кислотные аккумуляторы широко используются на бронемашинах для пи­тания бортовой сети. Они работают или параллельно с генераторами /в движении/, или автономно /на стоянке/.

Бензоэлектрические и дизель-электрические агрегаты переменного тока ис­пользуются в качестве источников тока для питания автомобильных радиостанций средней и большой мощности, тяжелых радиорелейных и радиолокационных станций, Эти агрегаты представляют собой генератор переменного тока необходимой мощности, который приводиться во вращение при помощи двигателя внутреннего сгорания, смонтированного на одном валу с генератором.

Агрегаты устанавливаются в аппаратной машине /вместе со станцией/ или в ав­топрицепе.

Кроме того, некоторые радиостанции в качестве источника питания могут ис­пользовать промышленную сеть переменного тока.

При питании, как от электросети, так и от агрегатов преобразования переменного электрического тока в постоянный и получение необходимых номиналов напряжений производиться с помощью выпрямителей.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Полуволновой вибратор.

Простейшая антенна — полуволновой вибратор, состоит из двух отрезков провода, направленных в противоположные стороны, в одной плоскости.

Общая длина их составляет половину длины волны, а длина отдельного отрезка — четверть. Если один из концов вибратора направлен вертикально, вместо второго может использоваться земля, или даже — общий проводник схемы передатчика.

Например, если длина вертикальной антенны составляет — 1 метр, то для радиоволны длиной 4 метра (диапазон УКВ) она будет представлять наибольшее сопротивление. Соответственно, эффективность такой антенны будет максимальной — именно для радиоволн этой длины, как при приеме, так и при передаче.

Говоря по правде, в диапазоне УКВ, наиболее уверенный прием должен наблюдаться, при горизонтальном расположении антенны. Это связано с тем, что передача в этом диапазоне с частотной модуляцией на самом деле, выполняется чаще всего, с помощью горизонтально расположенных полуволновых вибраторов. Поэтому, именно — полуволновой вибратор(а не четвертьволновой) будет являться более эффективной приемной антенной.

Различные радиоволновые диапазоны.

Радиоволны делятся на различные радиодиапазоны, в зависимости от их длины. Что такое — длина радиоволны? Радиоволны распостраняются со скоростью света(который сам по себе является одним из диапазонов электромагнитных колебаний). За секунду, они распостраняются на расстояние около 300000 километров. Разделив это расстояние на частоту электромагнитных колебаний можно узнать их длину волны.

Например, колебания частотой от 3 до 30 Кгц. порождают радиоволны сверхдлинного диапазона. Соответственно, длина сверхдлинных радиоволн лежит в пределах от 10 до 100 километров. Передача информации на большие расстояния, в этом диапазоне возможна, с применением очень больших передающих антенных устройств(более километра) и очень мощных передатчиков. Сверхдлинные волны применяют для дальней подводной связи.

Колебания частотой от 30 до 300 Кгц вызывают радиоволны длинноволнового диапазона. Их длина от 1 до 10 километров. Они способны огибать земную поверхность, за счет явления — дифракции. Дифракцией радиоволн называют их способность огибать в той или иной степени препятствия, лежащие на пути распостранения — выпуклость земного шара, горы, строения и. т. д.

Дифракция возникает в результате возбуждения радиоволной высокочастотных колебаний на поверхности препятствий. Эти колебания вызывают в свою очередь вторичное излучение радиоволн, проникающих в области пространства затененные от передающей антенны радиопередатчика. Часть энергии радиоволн при этом неизбежно теряется — на нагрев поверхности.

Передающие антенны длинноволнового диапазона довольно велики, как и мощность передатчика.

Главным достоинством длинных волн, является возможность очень устойчивой связи, на большое расстояние — без ретранслятора.

Частоты от 0,3 до 3Мгц — принадлежат средневолновому диапазону, от 3 до 30Мгц — коротковолновому. Волны этих диапазонов способны отражаться от различных слоев ионосферы, что способствует сверхдальней связи, при относительно невысокой мощности передатчика и небольших размерах передающей антенны.

Распостранение радиоволн на большие расстояния за счет пространственных волн объясняется отражением в ионосфере. Наряду с отражением имеет место частичное поглощение, возрастающее с увеличением длины волны.

Отражение и поглощение в ионосфере также связано с концентрацией электронов — величиной непостоянной. Ее изменения носят циклический характер — суточные, сезонные и связанные с 11-летним солнечным циклом, но нередко случаются и внезапные изменения — из за вспышек на солнце и падения метеорных потоков.

Частоты от 30Мгц до 3Ггц — радиоволны ультрокороткого(метрового и дециметрового) диапазона. Радиоволны этого диапазона хорошо поглощаются земной поверхностью и проходят через ионосферу — устойчивая связь возможна до линии горизонта. Плюсом здесь является качественная связь, при крайне малой мощности передатчика — и сответственно,возможности миниатюризации его размеров.

Сверхвысокочастотный диапазон 3 — 30Ггц(сантиметровый) используется для космической связи. Электромагнитные колебания такой частоты по своим свойствам вплотную приближаются к свету. Их можно легко фокусировать с помощью сферических отражателей, для передачи на очень большие расстояния.

Более сложное радио

Если вы хотите получить немного более сложное радио, используйте металлический файл и два куска проволоки. Соедините ручку файла к одному контакту 9-вольтовой батарейки, затем соедините второй кусок проволоки ко второму контакту и запустите конструкцию проводя вверх и вниз по файлу. Если вы сделаете это в темноте, вы сможете увидеть, как очень маленькие 9-вольтовые искры бегут вдоль файла, поскольку наконечник проволоки производит соединение и разъединение. Держите файл около AM-радио и тогда услышите много статики.

В первые дни радиопередатчики были названы искровыми катушками, и, кроме того, они создавали непрерывный поток искр при гораздо более высоких напряжениях (например, 20000 вольт). Высокое напряжение, соответственно, поспособствовало созданию больших искр, таких, какие вы видите в свече зажигания, например. Сегодня такой передатчик, как этот, незаконен, потому что спамит весь спектр радиочастот, но в первые дни он работал отлично и был очень распространён потому, что было не много людей, использующих радиоволны.

Основы радио: части

Как вы могли заметить из предыдущего раздела, создавать статику невероятно легко. Однако все радиостанции сегодня используют непрерывные волны синуса для передачи информации (аудио, видео, различные данные). Причина, по которой мы используемые непрерывные волны синуса сегодня — потому что есть много различных людей и устройств, которые в то же время хотят использовать радиоволны. Если бы у вас был какой-либо способ видеть их, то вы нашли бы, что есть буквально тысячи различных радиоволн (в форме волн синуса) вокруг вас прямо сейчас — телепередачи, радиопередачи AM и FM, полицейские и пожарные радио, спутниковые телевизионные передачи, разговоры сотовых телефонов, GPS-сигналы и так далее. Также удивительно, как много применений существует для радиоволн сегодня. Каждый отличающийся радиосигнал использует различную частоту волны синуса, и именно так они все разделены.

Как это работает: радио

У любой радио-установки есть две части: передатчик (трансмиттер) и приёмник (ресивер). Передатчик перехватывает своего рода сообщение (это может быть звук чьего-либо голоса, изображение экрана телевизора, данные для радиомодема или любое другое что-то), кодирует его на волну синуса и передаёт с радиоволнами. Приёмник же, понятное дело, принимает радиоволны и расшифровывает сообщение от волны синуса, которую оно получает. И трансмиттер и ресивер используют антенны, чтобы излучить и захватить радиосигнал.

Назначение и структурная схема радиопередатчика

Современные радиопередатчики представляют собой сборки из микросхем, транзисторов, диодов, электровакуумных приборов, конденсаторов, трансформаторов и множества иных элементов, соединенных между собой согласно определенной электрической схеме. Наиболее совершенные конструкции полностью состоят из полупроводниковых гибридных и интегральных микросхем. Радиопередатчики классифицируют по пяти основным признакам: назначению, объекту использования, диапазону частот, мощности и виду излучения.

Назначение радиопередатчика определяется радиотехнической системой, в которой он используется, и видом передаваемой информации. По этому признаку различают: радиосвязные, радиовещательные, телевизионные, радиолокационные, радиотелеметрические, радионавигационные, для радиоуправления и другие типы радиопередатчиков.

Объект использования определяется местом установки радиопередатчика, что влияет на условия его эксплуатации. По данному признаку различают: наземные стационарные, самолетные, спутниковые, корабельные, носимые и мобильные радиопередатчики, т. е. устанавливаемые на передвижных объектах.

По диапазону частот радиопередатчики различаются в соответствии с принятым делением радиочастотного диапазона (см. табл. 24.1). Границей между радиопередатчиками ВЧ и СВЧ диапазонов является частота 300 МГц.

По величине излучаемого сигнала в непрерывном режиме различают радиопередатчики малой (до 10 Вт), средней (до 1 кВт) и большой (свыше 1 кВт) мощности.

По виду излучения передатчики различают на работающие в непрерывном и импульсном режимах. В первом случае при передаче сообщения сигнал излучается непрерывно, во втором — в виде импульсов.

Радиопередатчик представляет собой сборку из отдельных каскадов и блоков, к числу которых относятся:

Автогенератор или генератор с самовозбуждением, являющийся источником высокочастотных (ВЧ) или сверхвысокочастотных (СВЧ) колебаний. В зависимости от метода стабилизации частоты различают кварцевые и бескварцевые автогенераторы.

Генератор с внешним или независимым возбуждением, являющийся усилителем ВЧ или СВЧ сигнала по мощности. В зависимости от полосы пропускания различают узко- и широкополосные генераторы.

Умножитель частоты, служащий для умножения частоты колебаний.

Амплитудный, импульсный, частотный и фазовый модуляторы, служащие для осуществления модуляции.

Фильтры, служащие для пропускания сигнала только в определенной полосе частот.

Согласующее устройство, служащее для согласования выходного сопротивления радиопередатчика с входным сопротивлением антенны.

Синтезатор частот, служащий для образования дискретного множества частот.

Возбудитель, включающий в свой состав синтезатор частот и частотный или фазовый модуляторы.

Антенно-фидерное устройство, соединяющее выход радиопередатчика с антенной.

Блоки автоматического регулирования, служащие для стабилизации или управления параметрами радиопередатчика. К их числу относятся: устройства автоматической подстройки частоты, автоматической перестройки электрических цепей усилительных каскадов, автоматической перестройки согласующего устройства, автоматического управления мощностью ВЧ или СВЧ колебаний, автоматического поддержания теплового режима. Современные устройства автоматического регулирования строятся на основе микропроцессора.

Разнообразные типы радиопередатчиков строятся как комбинация соответствующих каскадов и блоков. Обобщенная структурная

схема современного радиопередатчика представлена на рис. 17.2. Рассмотрим ее работу.

Возбудитель служит для формирования сетки рабочих частот с требуемой стабильностью. Он представляет собой цифровой синтезатор частот, в состав которого входит опорный кварцевый автогенератор, делитель с переменным коэффициентом деления (ДПКД) и устройство автоматической подстройки частоты. Такой синтезатор может быть построен на основе большой интегральной схемы (БИС).

Получение требуемой величины выходной мощности радиопередатчика осуществляется с помощью блока усиления мощности — последовательно (каскадно) включенных ВЧ или СВЧ генераторов с внешним возбуждением. При выходной мощности передатчика, превышающей мощность одного электронного прибора, в выходном каскаде осуществляется суммирование мощностей генераторов.

Между выходным каскадом радиопередатчика и антенной включается антенно-фидерное устройство (АФУ). В состав АФУ входят: фильтр для подавления побочных излучений радиопередатчика, датчики падающей и отраженной волны и согласующее устройство. При работе в СВЧ диапазоне обычно применяется ферритовое однонаправленное устройство — вентиль или циркулятор. Частотная модуляция осуществляется в возбудителе радиопередатчика, фазовая — в возбудителе или ВЧ умножителях и усилителях, амплитудная и импульсная — в ВЧ усилителях. С помощью блока автоматического управления осуществляется автоматическая стабилизация параметров радиопередатчика (в первую очередь мощности и температурного режима), защита при нарушении нормальных условий эксплуатации

(например, при обрыве антенны) и управление (включение-выключение, перестройка по частоте).

Сигнал на выходе радиопередатчика при амплитудной модуляции показан на рис. 6.2, при частотной модуляции — рис. 6.4.

Остановимся на вопросе побочных излучений радиопередатчика. В идеальном случае радиопередатчик должен излучать только сигнал на частоте несущей и его спектр должен укладываться в выделенную полосу частот (рис. 17.3, а). Однако в силу нескольких причин, основной из которых является нелинейный характер процессов, протекающих в каскадах радиопередатчика, в спектре излучаемого им сигнала появляются побочные составляющие (рис. 17.3, б).

Побочные излучения, лежащие за пределами, но вблизи выделенной полосы частот, называются внеполосными. Кроме них радиопередатчик может излучать гармоники, т. е. сигналы с частотой 2/0, 3/0 и т. д., а также субгармоники, т. е. сигналы с более низкой часто- той/0/и.

Поскольку полностью исключить побочные излучения нельзя, особенно в мощных радиопередатчиках, то устанавливается норма на их величину или в абсолютных единицах (т. е. указывается, что мощность такого-то побочного излучения не должна быть больше N МВт), или в относительных единицах к мощности основного, полезного излучения.

Обычно эта норма составляет не менее минус 60 дБ, т. е. по мощности побочное колебание должно быть меньше мощности основного не менее чем в 10 6 раз. На некоторых частотах эта норма может достигать минус 100 и более децибел.

Во все перечисленные выше радиотехнические системы входят как радиопередатчики, так и радиоприемники. При этом они не должны мешать друг другу при совместной, одновременной работе. Для обеспечения данного обязательного требования радиопередатчики должны излучать побочные колебания ниже определенной допустимой нормы. Только при этом условии может быть решена проблема электромагнитной совместимости радиоаппаратуры, работающей на одном объекте.

Другая сторона электромагнитной совместимости связана с работой радиотехнических систем на обширных территориях. Обратимся в этой связи к космической системе радиосвязи, в которой на спутнике устанавливается антенна, «освещающая» большую территорию на Земле. Чтобы радиоизлучения со спутника не влияли на наземные средства радиосвязи, мощность спутникового радиопередатчика должна быть ограниченна. В этой связи вводится норма на плотность потока мощности, создаваемого излучениями спутника у поверхности Земли, которая не должна превышать минус 152 дБ Вт/м 2 в полосе 4 кГц.

Такие же жесткие требования вводятся на побочные излучения радиовещательных и телевизионных наземных радиопередатчиков с целью исключения их взаимного влияния друг на друга.

Основные структурные схемы и принцип работы радиоприёмных устройств

Приемник состоит из трех основных частей (рис. 3): высокочастотной (линейной) части приемника (ВЧП или ЛЧП), нелинейной части – детектора и низкочастотной части приемника (НЧП).

Рис. 3. Составные части радиоприёмника

Радиоволна с заданной (известной) частотой (частотой сигнала или связи), несущая необходимое сообщение (полезный радиосигнал), принимается антенной и преобразуется в электрический сигнал .

ВЧП обеспечивает фильтрацию полезного сигнала по известному виду и известной частоте среди множества других сигналов и на фоне мешающего шума. Отфильтрованный сигнал поступает на вход детектора.

Детектор (Д) из выделенного полезного сигнала выделяет модулирующую функцию в виде электрического сигнала . НЧП приводит этот сигнал к виду, необходимому для получателя сообщения.

Следует особо заметить, что для неискаженного приема по­лезного сигнала и подавления мешающих сигналов необходимо, чтобы АЧХ линейной части приемника имела прямоугольную фор­му (кривая 1, рис. 2) с шириной, равной полосе частот спектра радиосигнала, а фазово-частотная характеристика была линейной. Оптимальная форма АЧХ и ее ширина определяются спектром по­лезного сигнала, видом и уровнем мешающих сигналов, крите­рием оптимальности и др. При настройке приемника на заданные частоты диапазона величина , ширина АЧХ и ее форма не должны подвергаться существенным изменениям.

Общее усиление линейной части приемника равно произведению коэффици­ентов усиления каскадов, из которых она состоит.

В зависимости от схемы выполне­ния линейной части различают приемники прямого усиления и су­пергетеродинные приемники.

Приемник прямого усиления

Базовым приемником можно считать так называемый приемник прямого усиления (рис. 4), структурная схема которого соответствует принципу получения звукового сообщения из радиосигнала.

Линейная (высокочастотная) часть приемника представляет собой входную цепь и УВЧ, низкочастотная часть приемника – УНЧ.

Высокочастотная часть приемника содержит резонансные элементы, которые выделяют требуемый сигнал из множества других сигналов. В УВЧ, кроме селекции, также осуществляется и усиление сигнала.

Рис. 4. Структурная схема приемника прямого усиления

Особенностью такого приемника является то, что фильтрация полезного сигнала по частоте, его усиление и детектирование осуществляется на несущей частоте принимаемого сигнала , поэтому его и называют приемником прямого усиления.

Принцип работы приемника прямого усиления.

Принятый антенной радиосигнал (как правило, смесь сигнала и помехи) через входную цепь поступает на вход усилителя высокой частоты. Здесь сигнал усиливается одним или несколькими каскадами.

Выходной сигнал УВЧ и поступает на вход детектора, где преобразуется в сигнал UД(t)=Uс(t)+Uп(t), где Uc(t) – сигнальная (полезная) составляющая, а Uп (t) – помеховая составляющая, искажающая сообщение.

УНЧ усиливает сигнал UД(t) до уровня, необходимого для нормальной работы выходного устройства (телефонов).

В некоторых приемниках при достаточной мощности входного сигнала детектор подключается непосредственно к входной цепи. Такие при­емники называются детекторными. Детекторные приемники име­ют низкую чувствительность и плохую избирательность, поэтому они нашли ограниченное применение.

Достоинствами приемников прямого усиления являются их простота, отсутствие дополнительных ка­налов приема.

Недостатками таких приемников являются: широкая полоса пропускания на высокой частоте; низкая чувствительность из-за высокого коэффициента шума; отличие формы АЧХ, в пределах диапазона рабочих частот, от прямоугольной; сложная перестройка по частоте.

Супергетеродинный приемник.

Недостатков приемника прямого усиления лишен супергетеродинный приемник (с преобразованием частоты).

Структурная схема супергетеродинного приемника представлена на рисунке 5.

Приемник состоит из входной цепи (ВЦ), усилителя высокой (радио) частоты, преобразователя частоты (ПЧ) (смеситель и гетеродин), усилителя промежуточной частоты (УПЧ), детектора и усилителя низкой (звуковой) частоты (УНЧ). Для повышения чув­ствительности и избирательности в данном приемнике, как правило, используется УВЧ с настраиваемым контуром.

Назначение ВЦ, УВЧ, детектора и УНЧ аналогично приемнику прямого усиления.

Известно, что в радиоприемниках, на высокой частоте, достаточно сложно технически обеспечить требуемую форму АЧХ, узкую полосу пропускания и большой коэффициент усиления. Однако эти сложности устраняются с помощью преобразования частоты, когда радиосигнал переносят на более низкую частоту называемую промежуточной .

Принципиальной особенностью супергетеродинного приемника является то, что частотная селекция полезного сигнала, основное усиление и его детектирование осуществляется на постоянной частоте, значительно меньшей частоты принимаемого сигнала , называемой промежуточной частотой.

В супергетеродинном приемнике перенос принимаемого радиосигнала на промежуточную частоту осуществляют с помощью преобразователя частоты.

ПЧ обеспечивает перенос спектра принимаемого радиосигнала с частоты на более низкую промежуточную частоту .

Структурная схема преобразователя частоты представлена на рисунке 6. На схеме: СМ – смеситель, Г – гетеродин, УПФ – узкополосный фильтр.

Рис. 5. Структурная схема супергетеродинного приемника

Попов, Маркони, Тесла?

Кем впервые была открыта радиосвязь? Говорить о конкретном изобретателе радио в принципе неправильно, так как слишком много людей в разное время сделали свой вклад в развитие этой технологии. Здесь и Томас Эдисон, и Никола Тесла, и Александр Попов, и Гульельмо Маркони, и многие другие.

Гульельмо Маркони

Интересно, что во многих странах есть свой изобретатель радио. Споры о том, кто был первым, велись долго, и на то было много причин.

В России традиционно считалось, что радио изобрел Александр Попов. Да, Попов проводил успешные эксперименты в области передачи данных начиная с 1895 года , однако его изобретение было сильно усовершенствовано и доведено «до ума» иностранными коллегами. К тому же Попов не патентовал свою работу.

Безусловно, вклад Попова в развитие радио нельзя недооценивать. Однако считать его единственным изобретателем радио неверно. Мнение, что Александр Попов изобрел радио, во многом было навязано пропагандой СССР, когда все возможные и невозможные изобретения пытались приписать советскому союзу.

Также противостояние вели Тесла и Маркони. Никола Тесла утверждал, что провел эксперименты по беспроводной передаче сигнала раньше 1896 года, когда это сделал Маркони. Однако Маркони, обладавший коммерческой жилкой, успел запатентовать изобретение первым.

Заслуга этого человека в том, что именно он смог найти прежде лишь теоретическим идеям действительно широкое практическое применение.

Настоящей сенсацией в 1901 году стала передача радиосигнала на расстояние 3200 километров. Тогда многие ученые считали, что радиоволна не может распространиться на такую дальность из-за шарообразной формы Земли.

Что такое радиоволна

Волна – это колебание. Морская волна – это колебание поверхности воды.

А радиоволна – изменение электромагнитного поля, распространяющееся в пространстве.

Так же как и свет, радиоволны представляют собой электромагнитное излучение. Разница лишь в частоте и длине волны. Скорость распространения радиоволны в вакууме равна примерно 300000 километров в секунду.

Ниже приведем весь спектр электромагнитных колебаний и покажем место радиоволн в нем.

Радиоволна – это сигнал. То, что передает информацию. Радиоволны делятся на диапазоны: от субмиллиметровых до сверхдлинных. Для каждого диапазона волн характерны свои особенности распространения.

Например, чем больше длина волны и чем меньше частота, тем больше волна способна огибать преграды. Длинные волны огибают всю планету.

Все маяки и спасательные станции настроены на волну длиной 6 метров и частотой 500 кГц.

Средние волны подвержены поглощению и рассеиванию сильнее. Длина их распространения – около 1500 км. Короткие волны проходят небольшие расстояния, их энергия поглощается поверхностью планеты.

Прежде чем разбираться с самим радио, нужно уточнить еще несколько моментов. Как именно передается информация.

Из каких основных частей состоят и как работают передатчик и приемник радиоволн

Принцип передачи информации по радиоволнам

В данной статье постараемся разобраться в принципах передачи информации по радиоканалу

1) Что такое радиоволны и откуда они берутся
Радиоволны представляют собой электромагнитные колебания переносящие через пространство энергию излучаемую генератором электромагнитных колебаний, электромагнитные колебания в свою очередь возникают при изменении полярности электрического поля, например, когда в проводнике проходит переменный электрический ток. Скорость распространения радиоволн в вакууме равна со скорости света 299 792 458 м/с или 300 000 км/c или 1080 миллионов километров в час. Чтобы примерно представить эту скорость приведем некоторые сравнения, так радиоволна может преодолеть длину экватора Земли за 134 мс, от Земли до Луны радиоволна доберется за 1,225 секунды а от Земли до Солнца за 8,3 минуты.
Для того чтобы понять как возникают радиоволны в генераторе электромагнитных колебаний рассмотрим схему простейшего идеального колебательного контура.
Рисунок ниже показывает простейший замкнутый колебательный контур состоящий из заряженного конденсатора и катушки индуктивности (1), заряженный конденсатор начинает разряжаться через индуктивность, в которой возникает электромагнитная индукция и накапливается энергия (2), в этот момент обкладки конденсатора полностью разряжены, далее ток течет через индуктивность и перетекает на обратные обкладки конденсатора полностью заряжая их энергией (3), зарядившись конденсатор вновь обратно начинает разряжаться через индуктивность (4) и так далее в обратном порядке (5) каждый раз заряжаясь и перезаряжаясь с определенной частотой колебаний.
Принцип колебательного контура
Для того, чтобы получить открытый колебательный контур, необходимо раздвинуть обкладки конденсатора, в этом случае мы получаем открытый контур излучающий электромагнитные волны в пространство (А), раздвинув обкладки конденсатора в разные стороны (B) получим открытый колебательный контур в котором электромагнитные — радиоволны излучаются в пространство. Если индуктивность заменим на обычный генератор электрического сигнала (С) получим антенну постоянно излучающую радиоволны в пространство с частотой колебаний генератора. На рисунке (D) показано схематичное изображение антенны.
радиоволны

свойства волны

Основной характеристикой радиоволн является частота, которая показывает, как часто в генераторе электромагнитных колебаний меняется направления электрического тока, а значит частота излучаемых радиоволн.
Если представить процесс изменения электромагнитного поля в виде графика изменения, получим картину представленную на рисунке ниже, видно изменение поля в течении времени – постоянный перезаряд обкладок конденсатора с переходными процессами.
Основные параметры радиоволн это амплитуда и длина волны, длина волны в свою очередь связана с частотой.
Амплитуда – соответствует величине напряженности электрического и магнитного поля.
Длина волны – соответствует расстоянию между двумя гребнями волны, двумя точками волны находящихся в одной фазе, связана со скоростью изменения напряженности электромагнитного поля.
Частота — количество волн за определенный период времени, измеряется в герцах [Гц]. Один герц, равен одному колебанию электрического сигнала, за 1 секунду времени [формула расчета частоты f=c/λ f — частота в герцах, с — скорость света, равная 300 000 000 м/сек., λ — длина волны в метрах]

2) После того как мы разобрались, что из себя представляют радиоволны, давайте разберемся, как можно передавать информацию по радиоволнам, представим что перед нами стоит задача передать некоторую последовательность бит 010101, логическую единицу можно пометить отличным уровнем амлпитуды или отличной частотой или сдвигом фазы. Поэтому основные из некоторых методов представления информации это амплитудная модуляция, частотная модуляция, фазовая модуляция.
Изменение амплитуды – называется амплитудной модуляцией, AM modulation
Основной принцип – изменение уровня напряженности электромагнитного поля передающей стороной.
Для обозначения нуля берем уровень амплитуды на базовом значении, а для обозначения единицы будем увеличивать амплитуду на небольшое значение. На графике видно как меняется амплитуда радиоволны в зависимости от битовой последовательности, нулю соответствует базовая амплитуда, а единицы более высокое значение. Амплитудная модуляция получила меньшее распространение в виду технической сложности реализации и малой устойчивостью к помехам, так например источник электромагнитного излучения не связанный с принимающей и передающей стороной может внести помехи в передачу, например разряд молнии кратковременно поднимет амплитуду и на выходе появится ложный сигнал в виде шума.Амплитудная модуляция
Изменение частоты – называется частотной модуляцией, FM modulation
Основной принцип – изменение частоты радиоизлучения.
Для обозначения нуля берем базовое значение частоты, а для обозначения единицы будем изменять значение частоты в большую сторону. На графике видно как меняется частота в зависимости от битовой последовательности, нулю соответствует базовое значение частоты, а единице более высокая частота отличная от базовой. Частотная модуляция получила большее распространение в виду простоты реализации – необходимо только увеличивать частоту путем изменения частотных характеристик колебательного контура. Так же данная модуляция более помехозащищенная, внешние шумы могут увеличит амплитуду сигнала, но частота при этом останется той же, после прохождения через ряд фильтров мы получим исходную последовательность.
частотная модуляция
Изменение фазы – называется фазовой модуляцией Phase-shift keying (PSK)
Основной принцип — скачкообразное изменение сдвига фазы несущей волны
Для обозначения нуля берем отсутствие сдвига по фазе а для обозначения логической единицы, в исходной цифровой последовательности, меняем фазу гармонической посылки на 180°. На графике видно как происходит сдвиг фазы при передачи логической единицы. Фазовая модуляция так же получила широкое распространение в виду хорошей помехозащищенности и простоты реализации. Излучаемая мощность передатчика с фазовой модуляцией всегда находиться на одном уровне, в отличие от амплитудной и частотной модуляции, что уменьшает основные требования к компонентам микроэлектроники.
фазовая модуляция

3) После того как мы разобрались что такое радиоволны и как по ним можно передавать информацию, давайте разберемся с аппаратной реализацией передачи и приема информации. В качестве примера возьмем передачу голоса от передатчика к приемнику, информацию будем передавать используя частотную модуляцию.

Передатчик — трансмиттер — transmitter
Состоит из генератора колебаний, так же называемым осциллятором и из модулятора, который изменяет базовую частоту радиоволны. Работает следующим образом:
— Для генерации базовой частоты радиоволны используем LC колебательный контур состоящий из конденсатора С2 и индуктивности L1, этим мы создаем базовую частоту на выходе антенны.
— Голос оказывая давления на микрофон и создает в нем незначительные электрические колебания которые поступая на Базу транзистора приоткрывает в нем переход Коллектор-Эмиттер. Чем больше громкость, тем больше уровень электрических колебаний создается на выходе микрофона и тем больше открывается переход транзистора.
— Открытый переход транзистора изменяет частотные характеристики колебательного контура в связи с чем на выходе антенны будет меняться частота в зависимости от поступающего сигнала, в данном случае происходит частотная модуляция голосового сигнала

передатчик

Приемник — ресивер — receiver
Состоит из принимающего устройства и демодулятора. Для получения голосового сигнала переданного нашим передатчиком нам необходимо демодулировать сигнал, работает это следующим образом:
— Подстроечным конденсатором С2 настраиваем колебательный контур состоящий из конденсатора С2 и индуктивности L1, так что бы в нем возникла частота колебаний равная базовой частоте передающего сигнала.
— Принятое антенной изменение частоты отличное от базовой вызывает в контуре резонанс, который незначительно повышает напряжение на базе транзистора, приоткрывая переход Коллектор-Эмиттер, чем больше уровень резонанса тем больше открыт транзистор, открытый транзистор в свою очередь меняет характеристики принимающего контура после транзистора и на выходе микрофона появляется звук переданный нашим передатчиком

Оцените статью
TutShema
Добавить комментарий