Из чего состоит простейшая электрическая цепь

Электричество — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов.

Название «электричество» произошло от греческого слова «электрон», так по-гречески называется янтарь. Еще в древности люди заметили, что если потереть янтарь о шерсть, он начинает притягивать различные тела: кусочки бумаги, соломинки, пушинки и т. д. Ученые решили, что при трении янтарю сообщается электрический заряд…

Эту тему можно развернуть не на одну страницу, но сейчас у нас другие цели. Мы должны научиться собирать и настраивать не сложные электронные схемы. Как они будут работать на физическом уровне, мы пока особо рассматривать не будем, сделаем упор на техническую сторону процесса, ну а тем, кто жаждет теоретических основ – поиск «Google» и «Яндекс» в помощь.

Давайте разберем, как работает простая электрическая цепь, состоящая из батарейки (источник тока), лампочки и выключателя. С помощью медных проводов нужно соединить лампочку с батарейкой и выключателем, пока выключатель находится в разомкнутом состоянии, ток по проводам не течет и лампочка не светится.

Простая электрическая цепь, монтажная схема.

Простая электрическая цепь, электрическая схема.

Если выключатель перевести в замкнутое состояние, то разность потенциалов (напряжение) между полюсами батарейки заставит электрический ток двигаться от минуса батарейки через лампочку, через выключатель к плюсу батарейки. В этом случае лампочка будет светиться, но очень слабо, а может и вовсе не будет. Дело в том, что наша лампочка рассчитана на напряжение 3.3 вольта, а наша батарейка дает только 1.5 вольта.

Для того, что бы лампочка светила, мы используем две батарейки соединенных последовательно. При последовательном соединении батареек напряжение увеличится вдвое и составит 3 вольта. Этого напряжения хватит для яркого свечения лампочки.

Простая электрическая цепь, монтажная схема, две батарейки.

Простая электрическая цепь, электрическая схема, две батарейки.

Электрическое напряжение

Разность электрических потенциалов – это есть напряжение. Напряжение обозначают буквой U. Единица напряжения названа вольтом (В). Что бы измерить напряжение в нашей схеме, нужно подключить вольтметр параллельно нагрузке (лампочке).

Простая электрическая цепь, измерение напряжения.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Простейшая электрическая цепь

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Обозначения элементов электрической цепи

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Простейшая электрическая цепь

Под электрической цепью понимают совокупность взаимосвязанных элементов, образующих путь для протекания электрического тока. Все процессы в электрической цепи подчинятся законам электротехники. Входящие в состав электрической цепи элементы можно условно разделить на 3 группы: генерирующие устройства, приемные устройства и вспомогательные элементы.

Простейшая электрическая цепь включает в себя следующие основные компоненты (рисунок 1):

  1. Источник электрической энергии (Источник тока).
  2. Приемник электрической энергии.
  3. Соединительные провода.

Также в состав простейшей электрической цепи может входить вспомогательное оборудование, например, замыкающее устройство, измерительные приборы (амперметр, вольтметр и пр.), защитные аппараты (предохранители и пр.).

Простейшая электрическая цепь

Источник электрической энергии, потребители, соединительные провода.

Источник электрической энергии — это устройство преобразующее различные виды энергии в электрическую энергию.

Источником электрической энергии может быть гальванический элемент, аккумулятор, электромеханический или термоэлектрический генератор, фотоэлемент и пр. Все источники электрического тока имеют внутренне сопротивление, но как правило оно мало по сравнению с сопротивлением других элементов цепи. Протекающий в цепи ток может быть как переменным, так и постоянным; его род определяется источником (например, гальванический элемент дает постоянное напряжение, обмотки трансформаторов и генераторов – переменное).

В зависимости от рода тока электрической цепи подразделяют:

  • цепи постоянного тока;
  • цепи переменного тока.

Потребителями в электрической цепи являются элементы, преобразующие электрическую энергию в механическую энергию, тепло, световое излучение и пр.

Примерами потребителей электроэнергии являются лампы накаливания, электронагревательные приборы, электродвигатели и другие элементы, требующие для работы потребление электрического тока.

Соединяющие элементы провода как правило выполняются из алюминия или меди. Это связано с низким удельным сопротивлением этих металлов – это значит, что потери напряжения в них будут незначительным. К недостаткам медных и алюминиевых проводов относят их существенное нагревание при превышении установленных предельных (максимально допустимых) значений тока и напряжения.

В состав любого электротехнического устройства (телефона, компьютера, телевизора и пр.) входят электрические цепи по которым, при наличии источника, может протекать электрический ток. В зависимости от элементов используемых в электрической цепи, можно подразделить на:

  • линейные или нелинейные цепи;
  • пассивные или активные цепи.

Для удобства расчетов и наглядного представления электрических цепей используют электрические схемы. На них все элементы электрической цепи отображены при помощи условных знаков (графических обозначений). Каждый электрический элемент имеет графическое представление, регламентированное ГОСТом, поэтому составленная одним человеком схема, может быть понятна и корректно интерпретирована другим. Иногда представление на электрической схеме одного реального элемента, может быть выполнено совокупностью нескольких стандартных элементов. Схема электрической цепи, представленной на рисунке 1, приведена на рисунке 2.

Схема простейшей электрической цепи

Протекание электрического тока возможно только в замкнутой электрической цепи.

Основными параметрами работы любого элемента, а также всей электроцепи в целом, являются значения тока, мощности и напряжения. Они определяют так называемый режим работы устройства. Для большинства электрических цепей значения тока и напряжения могут непрерывно меняться в широком диапазоне, следовательно режимов работы может быть бесконечное множество.

Электрическая цепь и ее составные части.

Продолжаю рассказ про «электричество»))). Материал мною взят из учебника по физике за 8 класс. Автор А.В. Перышкин. Издательство ДРОФА, Москва 2006.

§ 33. Электрическая цепь и ее составные части.

Для того чтобы использовать энергию электрического тока, нужно прежде всего иметь, источник тока.

Электродвигатели, лампы, плитки, всевозможные электробытовые приборы называют приемниками или потребителями электрической энергии.

Электрическую энергию нужно доставить к приемнику. Для этого приемник соединяют с источником электрической энергии проводами.

Условные обозначения, применяемые на схемах: 1 — гальванический элемент или аккумулятор, 2 — батарея элементов и аккумуляторов, 3 — соединение проводов. 4 — пересечение проводов (без соединения), 5 — зажимы для подключения какого-нибудь прибора, 6 — ключ, 7 — электрическая лампа, 8 — электрический звонок, 9 — резистор (проводник, имеющий определенное сопротивление), 10 — нагревательный элемент, 11 — плавкий предохранитель

Чтобы включать и выключать в нужное время приемники электрической энергии, применяют ключи, рубильники, кнопки, выключатели, т. е. замыкающие и размыкающие устройства.

Источник тока, приемники, замыкающие устройства, соединенные между собой проводами, составляют простейшую электрическую цепь.

Чтобы в цепи был ток, она должна быть замкнутой. т. е. состоять только из проводников электричества. Если в каком-нибудь месте провод оборвется, то ток в цепи прекратится. (На этом и основано действие выключателей.)

Чертежи, на которых изображены способы соединения электрических приборов в цепь, называют схемами. Приборы на схемах обозначают условными знаками (рис. 48). На рисунке 49 изображена схема простейшей электрической цепи.

1. Каково назначение источника тока в электрической цепи?

2. Какие приемники, или потребители, электрической энергии вы знаете?

3. Из каких частей состоит электрическая цепь?

4. Какую электрическую цепь называют замкнутой? разомкнутой?

Основы расчета

При расчете используют основные законы электрических цепей. Это, прежде всего, законы Ома, Ампера и Кирхгофа:

    Закон Ома связывает напряжение, ток и сопротивление.

Суть закона Ома

Суть закона Ома

Формулировка первого кирхофского закона

Формулировка первого кирхофского закона

Формулировка второго кирхгофского закона

Формулировка второго кирхгофского закона

Суть закона Ампера

Суть закона Ампера

Расчет всех электрических цепей заключается в использовании существующих алгоритмов, позволяющих определять необходимые показатели. Основные параметры для расчета электрической цепи:

  • Сопротивление (R) определяет степень сопротивления части электроцепи или всех ее элементов протеканию тока.
  • Напряжение (U) показывает разницу потенциалов между двумя точками соединения.
  • Ток (I) определяет интенсивность потока частиц с зарядом.
  • Мощность (P) позволяет рассчитать количество энергии, потребляемой или производимой соединением.

Рабочие режимы

Режимы работы любой электрической цепи, как и ее отдельных элементов, зависят от значений тока и напряжения. Поскольку эти параметры могут иметь любое значение, то и рабочих режимов может быть множество. Наиболее характерные — это номинальный и согласованный, а также режимы холостого хода (х. х) и короткого замыкания (к. з).

Режим является номинальным, если все элементы цепи работают с номинальными параметрами. При согласовании (определенном соотношении) параметров получают режим, названный согласованным. Данный режим считается самым оптимальным с точки зрения надежности, экономичности и долговечности.

Особенности номинального режима

Особенности номинального режима

В режиме холостого хода электрический ток не проходит сквозь источник или приемник. Источник в этом случае не отдает энергию в электроцепь, а приемник ее не потребляет. Например, для двигателя режим холостого хода означает работу без механической нагрузки на валу.

Особенности режимов холостого хода и короткого замыкания

Особенности режимов холостого хода и короткого замыкания

Режим короткого замыкания это аварийный режим. Он возникает, если элементы цепи, находящиеся под напряжением, соединяются между собой без сопротивления. Такая ситуация возможна, например, при соединении положительной и отрицательной клеммы источника питания с нулевым сопротивлением.

Составные части

Любая электрическая цепь имеет следующие базовые элементы: источник тока, потребители тока, соединительные провода. Потребители тока могут состоять из более мелких элементов второго уровня, каждый из которых имеет свое наименование, функцию и параметры.

Для удобства электрические цепи изображают в виде графических схем, в которых используются общепринятые условные символы различных элементов. Обозначения элементов электрических цепей имеют интернациональный характер, классифицированы и систематизированы.

Обозначения базовых элементов электрических схем:

Разновидности цепей

Различают цепи для постоянного и переменного токов. Постоянный ток не меняет своего направления. Пример сети постоянного тока — электрические цепи автомобилей. Переменный ток меняет свое направление с определенной частотой. График зависимости переменного тока от времени в нашей сети имеет синусоидальный вид. Полярность изменяется 50 раз в секунду, что соответствует частоте 50 Гц. Под внутренней частью цепи подразумевают источники электропитания. Под внешней — провода, переключатели, бытовые и измерительные приборы.

Все электрические цепи служат для производства, передачи и потребления электрической энергии. Элементы цепей подразделяются на пассивные и активные. К пассивным относятся потребляющие и передающие электроэнергию: лампочки, нагревательные элементы, электродвигатели и т.п. К активным —- источники, генерирующие электроэнергию: аккумуляторы, генераторы, солнечные батареи, термодатчики. Кроме этого элементы делятся на двухполюсные (два вывода) и многополюсные ( три и более выводов).

Пример двухполюсника — резистор. Пример трехполюсника — транзистор.

Примеры составных частей электрической цепи:

  • Источник. Обычно это аккумулятор, гальванический элемент или генератор. Реже, но бывают солнечные батареи или ветрогенераторы;
  • Проводник. Необходимый элемент для транспортировки электроэнергии от источника к потребителю;
  • Потребитель. Осветительные и нагревательные приборы, двигатели, бытовая техника, компьютеры;
  • Переключающие (коммутирующие) устройства. В простейшем варианте — выключатель.

Электрический ток течет только по замкнутой цепи. Если цепь разомкнуть, то движение электронов прекратится.

Электрическая цепь и ее элементы

1.1. Электрическая цепь и ее элементы
Электрическая цепь представляет собой совокупность устройств, предназначенных для производства, передачи и потребления электрической энергии. Пример простейшей электрической цепи показан на рис. 1.1. Кружок со стрелкой внутри и стоящей рядом буквой Е (рис. 1.1, а) обозначает так называемый источник ЭДС (его еще называют источником напряжения). Это идеализированный источник энергии, внутреннее сопротивление которого равно нулю, а напряжение постоянно по величине, равно ЭДС реального источника и не зависит от протекающего по нему тока. Стрелка показывает направление возрастания потенциала внутри источника. Плюс находится у острия, минус – у хвоста стрелки. Ток во внешней цепи протекает по направлению стрелки ЭДС – от плюса источника к минусу. Внутреннее сопротивление реального источника R0 соединяется последовательно с ЭДС Е, и в совокупности они образуют схему замещения реального источника (на рис. 1.1, а обведена пунктиром).
а) б)

Рис. 1.1. Простейшая электрическая цепь
Другое представление схемы генератора осуществляется в виде параллельного соединения источника тока и сопротивления R0 (рис. 1.1, б). Под источником тока понимают также идеализированный источник энергии, внутреннее сопротивление которого бесконечно велико, и который вырабатывает ток J, не зависящий от величины нагрузки R и равный частному от деления ЭДС реального источника на его внутреннее сопротивление J = E/R0. На схеме он изображается кружком с двойной стрелкой, рядом с которым ставится буква J (рис. 1.1, б).
В схеме рис. 1.1, а ЭДС равна сумме напряжений на нагрузке и внутреннем сопротивлении источника:
Е = U + IR0.
Отсюда
U = E – IR0. (1.1)

Последнее выражение представляет так называемую внешнюю характеристику генератора. Оно говорит о том, что напряжение на его зажимах меньше ЭДС на величину падения напряжения на внутреннем сопротивлении (рис. 1.2). Чем больше ток и внутреннее сопротивление генератора, тем меньше выдаваемое им напряжение. При холостом ходе генератора (при I = 0) напряжение, измеренное на его разомкнутых зажимах равно ЭДС: U = E.

Рис. 1.3. Напряжение на зажимах источника

На практике часто приходится сталкиваться с элементами схемы, показанными на рис. 1.3. Разница между ними заключается во взаимном направлении стрелок ЭДС и напряжения. В первом случае (рис. 1.3, а), когда эти стрелки направлены противоположно друг другу, напряжение определяется как разность потенциалов положительного и отрицательного зажимов источника и поэтому положительно. При одинаковых направлениях стрелок E и U (рис. 1.3, б) напряжение равно разности отрицательного и положительного потенциалов, а потому оно отрицательно:
U = – E.

Пример 1.1. Напряжение холостого хода батареи равно 16,4 В. Чему равно ее внутреннее сопротивление, если при токе во внешней цепи, равном 8 А, напряжение на ее зажимах равно 15,2 В?
Р е ш е н и е. В соответствии с уравнением (1.1) из схемы, показанной на рис. 1.4, а, следует U = UX = E = 16,4 В.
Схема 1.4, б дает Ом.
а б

Рис. 1.4. Разомкнутая (а) и замкнутая (б) цепи
При решении задачи мы полагали, что измерение проводилось идеальным вольтметром, имеющим бесконечно большое сопротивление. При конечной величине сопротивления вольтметра в измерение вносится погрешность.

Пример 1.2. ЭДС батареи измеряется вольтметром, имеющим сопротивление RV. Чему равно показание вольтметра при трех различных значениях его сопротивления, если Е = 80 В, = 100 Ом?
Р е ш е н и е. Показание вольтметра UV равно падению напряжения на его сопротивлении (рис. 1.5):

а) RV = 100 кОм:

б) RV = 2,5 кОм:

в) RV = 400 Ом:

Чем больше сопротивление вольтметра, тем меньше погрешность измерения. Как следует из формулы (1.2), только при RV ? показание вольтметра равно ЭДС: UV = E.
Нагрузкой в схеме на рис. 1.1 служит сопротивление R. Напряжение на его зажимах связано с током законом Ома
I = GU, (1.3)
где G – проводимость, величина, обратная сопротивлению R; единица измерения – cименс (См).

При G = const выражение (1.3) представляет собой уравнение прямой, проходящей через начало координат. Его график (рис. 1.6) называется вольтамперной характеристикой. Элементы электрической цепи, имеющие аналогичную (прямолинейную) вольтамперную характеристику, называются линейными. Электрическая цепь, состоящая только из линейных элементов, также называется линейной.

Рис. 1.6. Вольтамперная характеристика линейного сопротивления

Полагая в уравнении (1.3) , получим U = IR. Последнее выражение справедливо, когда стрелки напряжения и тока у резистора направлены в одну сторону (рис. 1.7, а). При изменении на схеме направления любой из стрелок в правой части закона Ома следует ставить минус (рис. 1.7, б). Здесь при определении напряжения на элементе мы «идем по стрелке» напряжения против стрелки тока.

Рядом с буквой U можно ставить два индекса, обозначающие точки, между которыми определяется напряжение; например, Uab – напряжение между точками а и b. При этом направление стрелки напряжения на схеме определяется порядком следования индексов – от а к b (от первого индекса ко второму).

Рис. 1.7. Напряжение и ток в сопротивлении

Оцените статью
TutShema
Добавить комментарий