Инфразвук влияние на человека

Гакаев, Д. А. Влияние шума и инфразвуков на организм человека / Д. А. Гакаев. — Текст : непосредственный // Молодой ученый. — 2015. — № 15 (95). — С. 261-264. — URL: https://moluch.ru/archive/95/21473/ (дата обращения: 06.02.2024).

Шумовое загрязнение — форма физического загрязнения, проявляющегося в увеличении уровня шума сверх природного и вызывающего при кратковременной продолжительности беспокойство, а при длительной — повреждение воспринимающих его органов или гибель организмов.

Для всех живых организмов, в том числе и человека, звук является одним из воздействий окружающей среды, транспорта, производства. В природе громкие звуки редки, шум относительно слаб и непродолжителен. Сочетание звуковых раздражителей дает время человеку, необходимое для оценки их характера и формирования ответной реакции. Звуки и шумы большой мощности поражают слуховой аппарат, нервные центры, могут вызвать болевые ощущения и шок. Так действует шумовое загрязнение.

С ростом урбанизации шум стал постоянной частью человеческой жизни, одним из существенных загрязнителей городской среды. Загрязнение нашей звуковой окружающей среды за последнее сто лет приобрело угрожающие масштабы. Оно не только вызывает раздражение или ведет к снижению остроты слуха. Шум вызывает сильнейший стресс, который может привести к бессоннице, высокому кровяному давлению и нарушению функций мозга. Одна из проблем заключается в том, что многие люди воспринимают излишний шум всего лишь как досадное неудобство, а не как серьезную опасность для здоровья [1,3].

Чрезмерная шумовая нагрузка резко снижает работоспособность, уменьшает эффективность отдыха, ведет к хроническому переутомлению, глухоте. Шум способен привести и к физиологическим изменениям: к разнообразным расстройствам сердечно-сосудистой системы, к болезням желез внутренней секреции и дыхательных путей, возникающих в результате общей нервной напряженности. Шум обладает способностью «накапливаться» в организме и вызывать различные заболевания и негативные отклонения в здоровье. От избыточного шума снижается иммунный барьер и резко увеличивается частота заболеваний; повышается раздражительность. Но прежде всего чрезмерный шум ведет к притуплению слуха или полной его потере со временем [2,6].

Рассеивая внимание, шум существенно влияет на трудоспособность и результативность труда. Особенно сильно влияет шум на работоспособность при умственных операциях. Ощутимый шум снижает работоспособность умственного труда более чем в 1,5 раза, а у людей, занятых физическим трудом, — почти на 1/3. При этом информация, полученная при ощутимом шумовом загрязнении, долго не может храниться в памяти или сохраняется только в пассивном (узнаваемом в тексте), а не в активном варианте. Шум рассеивает внимание человека, мешает ему сосредоточиться на главном, осложняет принятие нужных решений. Приводит к расстройству деятельности сердца, печени, к истощению и перенапряжению нервных клеток. Ослабленные клетки нервной системы не могут достаточно четко координировать работу различных систем организма. Отсюда возникают нарушения их деятельности.

Особенности действия инфразвука на человека

Таблица примеров шумового воздействия на органы человека

Примеры шумового воздействия

Шумовое воздействие (дБ)

Эффект продолжительного воздействия

Реактивный двигатель при взлете (на расстоянии 25 м)

Разрыв барабанных перепонок

Удар грома, ткацкий станок, рок-музыка, сирена (близкое расстояние), цепная пила

Порог боли у человека

Метро, подвесной мотор, косилка для газонов, мотоцикл (расстояние 8 м), трактор, полиграфическое предприятие, отбойный молоток, мусоровоз

Серьезная угроза для слуха (время воздействия 8 ч)

Оживленная городская улица, дизельный грузовик, хлопкопрядильная машина

Угроза для слуха (время воздействия 8 ч), плохая слышимость

Уборка мусора, стиральная машина, типичная фабрика, товарный поезд (расстояние 15 м), посудомоечная машина, миксер

Возможна угроза для слуха

Скоростная автомагистраль (расстояние 15 м), пылесос, шумный офис, вечеринка, телевизор

Разговор в ресторане, обычный офис, музыкальный фон, чириканье птиц

Спокойный пригород (в дневное время), разговор в жилой комнате

Слабое воздействие на слух

Библиотека, тихий музыкальный фон

Спокойная сельская местность (в ночное время)

Шепот, шелест листьев

Очень слабое воздействие

Уровень шума измеряется в единицах, выражающих степень звукового давления, — децибелах. Уровень шума в 20–30 децибелов (дБ) практически безвреден для человека, это естественный шумовой фон. Что же касается громких звуков, то здесь допустимая граница составляет примерно 80 децибелов, и то при уровне шума 60–90дБ возникают неприятные ощущения. Звук в 120–130 децибелов уже вызывает у человека болевое ощущение, а 150 становится для него непереносимым. Недаром в средние века существовала казнь «под колокол». Гул колокольного звона мучил и медленно убивал осужденного. Звук в 180дБ вызывает усталость металла, а в 190 — вырывает заклёпки из конструкций. Очень высок уровень и промышленных шумов. На многих работах и шумных производствах он достигает 90–110 децибелов и более. Ненамного тише и у нас дома, где появляются все новые источники шума — так называемая бытовая техника. Также известно, что кроны деревьев поглощают звуки на 10–20дБ. Шум в 60–80 дБ вызывает у человека расстройства вегетативной нервной системы, 90–110 дБ — снижение слуха. А шум в 115–120 дБ — это «болевой порог», когда звука как такового уже не слышно, но чувствуется боль в ушах. При 140–145 дБ могут даже лопнуть барабанные перепонки. Шум в 150 дБ просто нестерпим, 180 дБ — смертельный для человека.

У детей, которые проживают в условиях городского шума, наблюдается отставание в умственном развитии. А частые посещения подростками дискотек могут привести к потере слуха, ведь там «звучит» 105–110 дБ, а в случае усиления динамиков — до 120 дБ, что приравнивается к грохоту электропоезда [3,7].

Долгое время влияние шума на организм человека специально не изучалось, хотя уже в древности знали о его вреде и, например, в античных городах вводились правила ограничения шума. В настоящее время ученые во многих странах мира ведут различные исследования с целью выяснения влияния шума на здоровье человека. Их исследования показали, что шум наносит ощутимый вред здоровью человека. Обладая аккумулятивным эффектом, т. е. акустические раздражение, шум, накапливаясь в организме, все сильнее угнетает нервную систему. Особенно вредной влияние шум оказывает на нервно-психическую деятельность организма. Процесс нервно-психических заболеваний выше среди лиц, работающих в шумных условиях, нежели у лиц, работающих в нормальных звуковых условиях. Шумы вызывают функциональные расстройства сердечно-сосудистой системы [6,8].

Шум оказывает вредное влияние на зрительный и вестибулярный анализаторы, снижает рефлекторную деятельность, что часто становится причиной несчастных случаев и травм. Чем выше интенсивность шума, тем хуже мы видим и реагируем на происходящее. Этот перечень можно продолжить. Но необходимо подчеркнуть, что шум коварен, его вредное воздействие на организм совершенно незримо, незаметно и имеет аккумулирующий характер, более того, против шума организм человека практически не защищён. При резком свете мы закрываем глаза, инстинкт самосохранения спасает нас от ожогов, заставляя отдёрнуть руку от горячего и т. д., а от воздействия шума у человека нет защитной реакции. Поэтому и существует недооценка борьбы с шумом.

Неслышимые звуки также могут оказать вредной воздействие на здоровье человека. Так, инфразвуки особое влияние оказывают на психическую сферу человека: поражаются все виды интеллектуальной деятельности, ухудшаются настроение, иногда появляется ощущение растерянности, тревоги, испуга, страха, а при высокой интенсивности — чувство слабости, как после сильного нервного потрясения. Даже слабые звуки — инфразвуки могут оказывать на человека существенное воздействие, в особенности, если они носят длительный характер. По мнению ученых, именно инфразвуками, неслышно проникающими сквозь самые толстые стены, вызываются многие нервные болезни жителей крупных городов. Ультразвуки, занимающие заметное место в гамме производственных шумов, также опасны. Механизмы их действия на живые организмы крайне многообразны. Особенно сильно их отрицательному воздействию подвержены клетки нервной системы. Шум коварен, его вредное воздействие на организм совершается незримо, незаметно. Нарушения в организме человека против шума практически беззащитен.

Таким образом, с шумом необходимо бороться, а не пытаться привыкнуть. Борьбе с шумом посвящена акустическая экология, целью и смыслом которой являются стремление установить такое акустическое окружение, которое соответствовало бы или было созвучно голосам природы, ибо шумы техники противоестественны всему живому, эволюционно сложившемуся на планете. Следует помнить, что борьба с шумом велась ещё в древности [4,8].

Санитарные нормы и правила устанавливают: предельно допустимые уровни шума на рабочих местах в помещениях и на территории производственных предприятий, создающих шум, и на границе их территории; основные мероприятия по уменьшению уровней шумов и предупреждению воздействия шума на человека.

Наиболее вредные для человека инфра- и ультразвуки. Дело в том, что человек, в отличие от многих животных, не слышит их, а следовательно, не имеет возможности защищаться от их вредного действия. Надо, однако, отметить, что степень их влияния зависит от частоты и времени их действия. Кстати, биение сердца, колебания легких, работа кишечника, вибрации голосовых связок также сопровождаются генерацией инфразвуков, но вряд ли они нам вредят. В природе источниками инфразвуков являются микросейсмические колебания земной поверхности, вулканические извержения, взаимодействия геологических платформ Земли перед образованием разломов.

В индустриальном обществе источниками инфразвуков являются автомобильные, авиационные и ракетные двигатели, громкоговорители и даже органные трубы.

Особенно опасные для здоровья человека инфразвуки частотой 5–10 Гц (они резонансно действуют на клетки живой ткани, которые имеют частоту собственных колебаний приблизительно 8 Гц). Такие инфразвуки наносят вред внутренним органам человека: при частоте 5 Гц повреждается печень, 6 Гц — развивается морская болезнь, 7 Гц — могут остановиться сердце и разорваться кровеносные сосуды. Инфразвуки большой мощности влияют на психику человека: возникает сонливость, ощущение страха и тому подобное. Но основным следствием действия инфразвука на живые организмы является нарушение вестибулярного аппарата [5,6]. Инфразвуки значительной интенсивности способны вызывать не только изменения слуховой чувствительности, но и болезненные ощущения, затруднения речи и модуляции голоса, нарушения респираторной активности, изменения a-ритмов мозга.

В условиях современной цивилизации мощным источником ультразвуков являются многочисленные процессы промышленного производства и транспорта. Скорость распространения их зависит от свойств среды. Сейчас известно, что ультразвуки малой интенсивности действуют на живые объекты благотворно, а большой интенсивности — пагубно (они разрушают живые клетки). В частности, механический фактор, предопределенный ультразвуковым излучением, приводит к нарушению функций определенных участков организма, например, к блокаде мелких капилляров сгустками эритроцитов.

Тепловые эффекты связанные с процессом поглощения биологической тканью ультразвукового излучения, в результате чего ей передается часть энергии. Эта энергия превращается в тепло и приводит к повышению температуры тела живых организмов. Физико-химическое влияние предопределено изменением проницаемости биологических мембран и диффузионных процессов. Установлено влияние ультразвука на высокомолекулярные соединения: витамины, гормоны, ферменты. Ультразвук способствует высвобождению из органов и тканей организма биологически активных веществ. Однако резкой границы между зонами действия ультразвуков малой и большой интенсивности не существует. Все зависит от характера биологического объекта и большого количества внешних факторов. Поэтому из всех шумовых раздражителей наибольший вред наносят уличные шумы, по большей части созданные автотранспортом.

1. Гакаев К. А. Медико-экологические и географические факторы состояния здоровья жителей селитебной зоны г.Грозный / К. А. Гакаев, Х. Б. Эльдарова // Молодой ученый. — 2015. — № 11. — С. 629–631.

2. Гакаев К. А. Медико-географические особенности воздушного бассейна урбанизированных территорий и их влияние на здоровье населения Чеченской Республики / К. А. Гакаев, Р. Б. Ахмиева, К. Я. Зухайраева // Молодой ученый. — 2015. — № 12. — С. 64–68.

3. Линченко С. Н. Экологическое состояние окружающей природной среды и здоровье человека. — Краснодар, 2007. — 64 с.

4. Рашидов М. У. К вопросу взаимоотношения общества и природы в Чеченской Республике/Рашидов М. У., Гакаев Р. А.//Вопросы современной науки и практики. Университет им. В. И. Вернадского № 3 (9)/2007.

5. Рашидов М. У. Гакаев Р. А. Проблемы оздоровления окружающей среды Чеченской Республики. Материалы II Международной научно-практической конференции «Наука и устойчивое развитие общества. Наследие В. И. Вернадского», г.Тамбов, 2007 г.

6. Суворов Г. А., Шкаринов Л. Н., Денисов Э. И. Гигиеническое нормирование производственных шумов и вибраций. — М: Медицина, 1984. — 240 с.

7. Убаева Р. Ш., Гакаев Р. А., Ирисханов И. В. Основы системной экологии. — Назрань: КЕП, 2015. — 132с.

8. Эльдарова Х. Б. Анализ медико-экологических показателей состояния здоровья населения Чеченской Республики/ Эльдарова Х. Б., Гакаев Р. А.// Горные территории: вопросы сохранения самобытности и обеспечения устойчивого развития: сборник трудов международной научно-практической конференции. — Махачкала. 2015.

Основные термины (генерируются автоматически): шум, здоровье человека, звук, нервная система, организм, организм человека, уровень шума, шумовое воздействие, шумовое загрязнение, вредное воздействие.

Вредное воздействие инфразвука на человека

Интерес к данной теме обусловлен тем ,что люди ежедневно сталкиваются с влиянием на них инфразвука. Инфразвук сопровождает нас повсюду: в квартире его источником могут являтся несущие стены дома, вентиляторы, а на улице- ветер и движущийся транспорт. Тема «Влияние инфразвука на человека », на мой взгляд, является интересной, еще и потому что она раскрывает положительное и отрицательное влияние инфразвука на человека, и их последствия.

Актуальность: Рост числа видов деятельности человека, использующих инфразвуки.

Проблема: Влияние инфразвуков на людей.

Цель: Изучить влияние инфразвуков на людей

  1. Изучить письменные и электронные источники, связанные с инфразвуками и их влиянием на людей
  2. Довести до сведения одноклассников, какие заболевания вызывает воздействие инфразвука на организм человека

Методы исследования: анализ источников, социологический опрос (в виде теста)

Инфразвук всегда присутствует в природе. «Инфразвук — звуковые колебания, имеющие частоту ниже воспринимаемой человеческим ухом, то есть ниже 16 Гц»[3,130](наглядно показано на рис. 3) В настоящее время область его изучения простирается вниз примерно до 0,001 Гц. Основная особенность инфразвука, обусловленная его низкой частотой, — это малое поглощение. Вследствие малого поглощения и рассеяния инфразвук может распространяться на очень большие расстояния. Известно, что звуки извержения вулканов, атомных взрывов могут многократно обходить вокруг земного шара, сейсмические волны могут пересекать всю толщу Земли. По этим же причинам инфразвук почти невозможно изолировать, и все звукопоглощающие материалы теряют свою эффективность на инфразвуковых частотах.
Инфразвуковые колебания воздействуют на весь организм человека, вызывая резонансные явления как всего человеческого тела, так и отдельных его частей, внутренних органов и систем, вызывая те или иные нарушения в организме. При этом у человека увеличивается общий расход энергии, так как под действием низкочастотных колебаний повышается среднемышечная напряженность. Поэтому можно полагать, что инфразвуковые колебания воспринимаются человеком как физическая нагрузка, которую можно сравнить с другими видами нагрузки, как, например, физическая работа, тепловая нагрузка и др. Инфразвук может вселить в человека такие чувства как тоска, панический страх, ощущение холода, беспокойство, дрожь в позвоночнике. Люди, подвергшиеся воздействию инфразвука, испытывают примерно те же ощущения, что и при посещении мест, где происходили встречи с призраками. Попадая в резонанс с биоритмами человека, инфразвук особо высокой интенсивности может вызвать мгновенную смерть.

Конечно, инфразвук присутствует и в человеке. Например, органы человека имеют инфразвуковую частоту колебаний.

Инфразвук действует за счет резонанса: частоты колебаний при многих процессах в организме лежат в инфразвуковом диапазоне:

«вестебулярный аппарат 0.5-13 Гц

сокращения сердца 4-6 Гц

руки 2-5 Гц» (см. рис. 1)

дельта-ритм мозга (состояние сна) 0,5-3,5 Гц

альфа-ритм мозга (состояние покоя) 8-13 Гц

бета-ритм мозга (умственная работа) 14-35 Гц

мозг, печень 4-9 Гц

Инфразвук слабо поглощается окружающей средой, а потому беспрепятственно распространяется на большие расстояния. Он имеет естественные и техногенные источники. К естественным источникам относятся землетрясения, бури, ураганы, молнии, цунами. К техногенным – оборудование, созданное силой человеческой мысли и работающее с частотой менее 20 циклов в секунду, например, вентиляторы, ветрогенераторы, судовые двигатели. Для инфразвука препятствий не существует. Он проникает сквозь стёкла и стены. Он вездесущ, неслышим и невидим.

Примером естественного источника инфразвука можно также считать «Голос моря». «Голос моря»- это инфразвуковые волны, возникающие над поверхностью моря при сильном ветре, в результате вихреобразования за гребнями волн. Поскольку он распространяется быстрее области шторма, то «Голос моря» может помочь заранее предсказать шторм. Так, например, медузы, с помощью звуковых колбочек, могут узнать о приближении шторма за 20 часов до того, как он придет в место их обитания и уйти на дно.

А примером техногенного источника инфразвука являются автомобильный транспорт, железнодорожный транспорт, трамваи, промышленная вентиляция, реактивные самолеты (см. рис. 2)

Так как длина инфразвуковой волны весьма велика, проникновение ее в ткани тела тоже будет велико. Фигурально говоря, человек слышит инфразвук всем телом. Действуя за счет резонанса, инфразвуковые колебания по частоте могут совпадать со многими процессами, происходящими в нашем организме.

Самым губительным образом воздействуют на наши внутренности внешние колебания в промежутке 6—12 Гц. При малой интенсивности они вызывают тошноту, звон в ушах, расстройства зрения и безотчетный панический страх. Инфразвук средней интенсивности нарушает работу органов пищеварений и мозга. Значительные психотропные эффекты сильнее всего выказываются на частоте 7 Гц, созвучной альфаритму природных колебаний мозга, причем любая умственная работа в этом случае делается невозможной, поскольку кажется, что голова вот-вот разорвется на мелкие кусочки. Инфрачастоты около 12 Гц при силе в 85–110 дБ, наводят приступы морской болезни и головокружение, а колебания частотой 15–18 Гц при той же интенсивности внушают чувства беспокойства, неуверенности и, наконец, панического страха.

Как мы уже выяснили огрганы человека работают на разных частотах, поэтому и эффекты влияния на них инфразвуков будут различный.

Так, например, медики обратили внимание на опасный резонанс брюшной полости, имеющей место при колебаниях с частотой 4-8 Гц. Попробовали стягивать (сначала на модели) область живота ремнями. Частоты резонанса несколько повысились, однако физиологическое воздействие инфразвука не ослабилось.

Легкие, также подвержены инфразвуковым колебаниям, при совпадении их частот с частотой инфразвука, самое малое сопротивление стенок легких приведет к их повреждению.

Если же частота инфразвука совпадет с частотой биения сердца, то в самом крайнем случае это может привести к остановке сердца.

Примером случайного использования инфразвука может служить зафисксированный факт:

«Летом 1982 года на палубе ледокола «Таймыр» проводились запуски метеорологических шаров-зондов. Готовясь к одному из них, аэролог случайно коснулся лицом оболочки надутого шара и. отпрянул от острой боли в ушах!

А ночью на «Таймыр» обрушился жестокий шторм.

Находившийся на борту будущий академик В. В. Шулейкин заинтересовался странным происшествием, попробовал найти связь между надувным шаром, болевыми ощущениями и штормом. И в конце концов после ряда экспериментов ему удалось все объяснить. Оказалось, что оболочка шара, надутая водородом, служила своеобразным резонатором, усиливавшим звуковые колебания частотой 6-12 Гц. Они-то и вызывали боль в ушах. Источником же столь низкой частоты бал шторм, бушевавший за сотни миль от «Таймыра». Это открытие позволило со временем создать прибор для предсказания шторма (мы писали о нем в «ЮТ» № 7 за 1988 год), а главное привлекло внимание ученых. Исследования вскоре показали, что инфразвуковых колебаний в природе гораздо больше, чем слышемых звуков. Дует ветер- раскачивает деревья, гонит волны по морю, но при этом создает еще и сверхнизкие акустические колебания. Неуловимые малые землетрясения колеблют кору нашей планеты с частотой 0.1- 1 ГЦ и тоже создает инфразвуковой фон.»[1,8].

Medico-psychological impact of infrasound on human organism

Studies suggest that noise may harm health. Yet another reported health impact of noise is increased anxiety and levels of annoyance. In an independent study on the effects of noise on people the scientists found that factors concerning how people perceive and respond to their environment, such as expectations of noise level, are most predictive of annoyance level.

МЕДИКО-ПСИХОЛОГИЧЕСКОЕ ВОЗДЕЙСТВИЕ ИНФРАЗВУКА НА ОРГАНИЗМ ЧЕЛОВЕКА

Д.В. Назаров, В.Р. Ахмедзянов

Экологический факультет, Российский университет дружбы народов, Подольское шоссе, 8/5, 113093, Москва, Россия

Работа посвящена влиянию инфразвука на внутренние органы и сознание человека. Проведен анализ воздействия акустических волн на сознание людей, главным образом на эмоциональные, психофизиологические, подсознательные факторы, с целью контроля их поведения.

Методы скрытого воздействия на психику человека давно вышли за пределы закрытых лабораторий. Г ипноз, нейролингвистическое программирование, «вмонтированные» в музыку команды, звуковое давление и т.д. — все это относится к психотронному оружию.

Имеется широкий спектр средств, способных гарантированно поменять способ видения человека, программировать его поведение, нарушать адекватность реакций и искусственно признавать синдром зависимости.

Возникновение неадекватных изменений и ответ на воздействие шума обусловлен обширными анатомо-физиологическими связями слухового анализатора с различными отделами нервной системы. Акустический раздражитель, действуя через рецепторный аппарат слухового анализатора, вызывает рефлекторные сдвиги в функциях не только его коркового отдела, но и других органов.

Аудиовизуальное воздействие через слуховой или зрительные каналы, когда очень слабые нижнепороговые раздражители, не воспринимаемые сознанием, глубоко внедряются в подсознание и незаметно ориентируют мышление и поведение человека в заданном направлении.

С помощью ультразвука тепловые или механические воздействия упругих колебаний свыше 100 Гц, не ощущаемые человеком, оказывают влияние на мыслительные структуры, нервную систему, вызывают головную боль, головокружение, расстройство зрения и дыхания, конвульсии вплоть до отключения сознания.

Использование инфразвука (очень низкие частоты, ниже 10 Гц) малой интенсивности (около 120 децибел) вызывает тошноту, звон в ушах, ухудшение зрения, страх. Звук средней интенсивности (до 130 децибел) расстраивает органы пищеварения и мозг, порождает паралич, а иногда и слепоту (Федеральный закон РФ «Об оружии»). Воздействие инфразвука интенсивностью 130 децибел и выше может вызвать у объекта остановку сердца.

Под воздействием сверхвысокочастотного излучения возникают нарушения восприятия реальности, усталость, тошнота, головная боль, могут повреждаться сердце, мозг, центральная нервная система. В качестве антенных передатчиков таких волн могут использоваться телефонные провода, трубы канализации и отопления, телевизор, противопожарная сигнализация.

Длина инфразвуковой волны весьма велика (на частоте 3,5 Гц она равна 100 метрам), проникновение в ткани тела также велико. Фигурально говоря, человек слышит инфразвук всем телом. Какие же неприятности может причинить проникший в тело инфразвук?

Довольно эффективно, в смысле влияния на человека, задействование механического резонанса упругих колебаний с частотами ниже 16 Гц, обычно не вое-

принимаемыми на слух. Самым опасным здесь считается промежуток от 6 до 9 Гц. Значительные психотронные эффекты сильнее всего выказываются на частоте 7 Гц, созвучной альфа-ритму природных колебаний мозга, причем любая умственная работа в этом случае делается невозможной, поскольку кажется, что голова вот-вот разорвется на мелкие кусочки. Звук малой интенсивности вызывает тошноту и звон в ушах, а также ухудшение зрения и безотчетный страх. Звук средней интенсивности расстраивает органы пищеварения и мозг, рождая паралич, общую слабость, а иногда слепоту. Упругий мощный инфразвук способен повредить, и даже полностью остановить сердце. Обычно неприятные ощущения начинаются со 120 дБ напряженности, травмирующие — со 130 Дб. Инфрачастоты около 12 Гц при силе в 85-110 дБ наводят приступы морской болезни и головокружение, а колебания частотой 15-18 Гц при той же интенсивности внушают чувство беспокойства, неуверенности и, наконец, панического страха.

В начале 1950-х годов французский исследователь Гавро, изучавший влияние инфразвука на организм человека, установил, что при колебаниях порядка 6 Гц у добровольцев, участвовавших в опытах, возникает ощущение усталости, потом беспокойства, переходящего в безотчетный ужас. По мнению Гавро, при 7 Гц возможен паралич сердца и нервной системы.

Ритмы, характерные для большинства систем организма человека, лежат в инфразвуковом диапазоне:

-сокращения сердца 1-2 Гц;

-дельта-ритм мозга (состояние сна) 0,5—3,5 Гц;

— альфа-ритм мозга (состояние покоя) 8-13 Гц;

— бета-ритм мозга (умственная работа) 14-35 Гц.

Внутренние органы вибрируют тоже с инфразвуковыми частотами. В инфразвуковом диапазоне находится ритм кишечника.

Медики обратили внимание на опасный резонанс брюшной полости, имеющий место при колебаниях с частотой 4-8 Гц. Попробовали стягивать (сначала на модели) область живота ремнями. Частоты резонанса несколько повысились, однако физиологическое воздействие инфразвука не ослабилось.

Легкие и сердце, как всякие объемные резонирующие системы, также склонны к интенсивным колебаниям при совпадении частот их резонансов с частотой инфразвука. Самое малое сопротивление инфразвуку оказывают стенки легких, что, в конце концов, может вызвать их повреждение.

Мозг. Здесь картина взаимодействия с инфразвуком особенно сложна. Небольшой группе испытуемых было предложено решить несложные задачи сначала при воздействии шума с частотой ниже 15 Гц и уровнем примерно 115 Дб, затем при действии алкоголя, и, наконец, при действии обоих факторов одновременно. Была установлена аналогия воздействия на человека алкоголя и инфразвука с частотой а- и Р- волн, существующих в мозге каждого человека. Эти биологические волны отчетливо обнаруживаются на энцефалограммах, и по их характеру врачи судят о тех или иных заболеваниях мозга. Высказано предположение о том, что случайная стимуляция биоволн инфразвуком соответствующей частоты может влиять на физиологическое состояние мозга.

Кровеносные сосуды. В опытах французских акустиков и физиологов 42 молодых человека в течение 50 минут подвергались воздействию инфразвука с частотой 7,5 Гц и уровнем 130 Дб. У всех испытуемых возникло заметное увеличение нижнего предела артериального давления. При воздействии инфразвука фиксировались изменения ритма сердечных сокращений и дыхания, ослабление функций зрения и слуха, повышенная утомляемость и другие нарушения.

К техническим (психотронным) средствам воздействия на психику человека, называемым в литературе психотронным оружием, относятся средства и методы

воздействия с опосредованным присутствием (или вообще отсутствием) человека, когда воздействие проводится по линии «техника-человек». Сюда включаются: средства предъявления неосознанной акустической информации; устройства предъявления неосознанной визуальной информации; генераторы сверхвысокочастотного (СВЧ) диапазона, так называемые «генераторы специзлучений»; компьютерные технологии и другая техника, с помощью которой осуществляется психофизическое воздействие на организм человека, либо на фоне программно направленных мероприятий проводится^ психологический захват человека с последующей модификацией его сознания и поведения (Влияние шума. )

Третья мировая война — это война информационно-психологическая, где ведущую роль играют средства массовой информации. Ударной силой здесь является телевидение,

Средства массовой информации, особенно электронные, превратились в оружие массового психопрограммирования. Применяется не метод убеждения или логики, основанный на законе свободной воли, а тотальная гипнотизация, воздействие на подсознание, т,е, внушение. Внушение оказывает влияние как на отдельного человека, так и на большие массы и социальные общности. Члены коллектива взаимно влияют друг на друга, и создается общая целевая установка, появляется специфический психологический климат. Во время телепередач используются так называемые фразы-кувалды, которые действуют на определенные центры мозга, и человек после этого неосознанно совершает преступления, насилие. Причем, он совершает это неосознанно, запрограммированно, хотя потом может и раскаиваться в содеянном. Это своего рода телевизионный психотронный СПИД.

Можно достичь такого состояния, что человек будет выполнять любые команды, установки. Главный психотехнический прием индукции — это вставка в речь фиксирующих кодирующих сообщений. Это называется «ловушка для сознания». С человеком можно делать все, что угодно, и он не будет помнить, что с ним было. Человек будет совершать любые внушенные действия, хотя внешних признаков транса не будет никаких. Это называется внушением положительных или отрицательных галлюцинаций.

Если внимательно посмотреть на работу средств массовой информации, становится ясно, что они работают в постоянном режиме психокодирования, внушения нужных установок. Суть такого воздействия заключается в смене логики социального поведения. (Прокофьев, 2003)

Практически во всем мире работа над «методами скрытого воздействия на человеческую психику» считается приоритетной и входит в список важнейших технологий XXI века. Развитые государства вписывают в свои военные доктрины статьи о приоритетном применении в первую очередь в локальных конфликтах нелегального оружия, которое позволяет добиться победы с наименьшими потерями не только среди своих солдат, но среди солдат противника.

Федеральный закон РФ «Об оружии» от 28 июня 2001 года, статья 6.

Влияние шума и инфразвука на организм человека, http://wvw.explosive.ru /1/4/ 303.html

Прокофьев В.Ф.Тайное оружие информационной войны: атака на подсознание. — М.: Синтег, 2003. — 408 с.

MEDICO-PSYCHOLOGICAL IMPACT OF INFRASOUND ON HUMAN ORGANISM

D.V. Nazarov, V.R. Akhmedzyanov

Ecological Faculty, Russian Peoples’ Friendship University,

Podolskoye shosse, 8/5, 113093, Moscow, Russia

Studies suggest that noise may harm health. Yet another reported health impact of noise is increased anxiety and levels of annoyance. In an independent study on the effects of noise on people the scientists found that factors concerning how people perceive and respond to their environment, such as expectations of noise level, are most predictive of annoyance level.

Инфразвук и окружающая среда

Инфразвук производится различными источниками, включая генераторы, промышленные установки, автомобильный транспорт и даже природные явления (землетрясения, вулканические извержения). Он способен также передаваться через землю и воду, что оказывает воздействие на животный и растительный мир.

Колебания окружают морские суда, сталеплавильные печи и транспортные средства, развивающие скорость свыше 100 км/ч. Высокоинтенсивный звук наблюдается во время приливов, вулканических извержений, смерчей и ураганов, землетрясений, штормовых явлений. В городах инфразвуковое воздействие излучают транспорт высокой грузоподъемности, системы вентиляции и кондиционирования больших мощностей, компрессорное оборудование.

65 Влияние инфразвука и ультразвука на орг. Человека и ср-ва защиты

Инфразвук — распространяющиеся в воздушной среде колебания с частотой ниже 16 Гц. Низкая частота инфразвукового колебания обусловливает ряд особенностей его распространения в окружающей среде.

Эффективным способом защиты от инфразвука является уменьшение его в источнике образования. Это достигается путём: -повышения быстроходности машин, что позволит перейти в слышимый диапазон звуков; -повышения жёсткости конструкций; -устранение низкочастотных вибраций; -установкой глушителей реактивного типа.

Источниками инфразвука в промышленности являются компрессоры, дизельные двигатели, вентиляторы, ветро- энергоустановки, реактивные двигатели, транспортные средства и др. В природе это землетрясения, извержения вулканов, морские бури, движение большого количества газа, жидкости, при вращательном движении, при ветре в горах. Инфразвук распространяется быстрее звука.

Воздействие на человека.

Действие инфразвука на человека воспринимается как физическая нагрузка: — нарушается пространственная ориентация,- возникают морская болезнь, — пищеварительные расстройства, — нарушения зрения, — головокружение, — изменяется периферическое кровообращение.

При воздействии инфразвука на организм уровнем 110 ÷ 150 дБ могут возникать неприятные субъективные ощущения и многочисленные реактивные изменения: нарушения в ЦНС, сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе. Отмечаются жалобы на головные боли, головокружение, осязаемые движения барабанных перепонок, звон в ушах и голове, снижение внимания и работоспособности; может появиться чувство страха, сонливость, затруднение речи; специфическая для действия инфразвука реакция — нарушение равновесия. При воздействии инфразвука с уровнем 105 дБ отмечены психофизиологические реакции в форме повышения тревожности и неуверенности, эмоциональной неустойчивости. Особенно неблагоприятно воздействие на организм человека инфразвуковых колебаний с частотой 4 ÷ 12 Гц.

Средства и методы защиты от инфразвука.

Что же касается инфразвука, то для этого физического фактора воздействия на человека в производственной среде пока не разработаны специфические методы защиты, а также четкие санитарно-гигиенические рекомендации.

К ним следует отнести: -снижение уровня инфразвука в его источнике; -увеличение жесткости колеблющихся конструкций; -применение глушителей реактивного типа.

Ультразвук — колебания свыше 20 кГц, распространяющиеся как в воздухе, так и в жидких и твердых средах.

В зависимости от способа передачи от источника к человеку ультразвук подразделяют:

1. контактный это ультразвук, передающийся при соприкосновении рук или других частей тела человека с его источником, обрабатываемыми деталями, приспособлениями для их удержания, озвучиваемыми жидкостями, сканерами медицинской ультразвуковой аппаратуры, искательными головками ультразвуковых дефектоскопов (передаётся на руки работающего через твёрдую или жидкую среду).

2. воздушный это ультразвуковые колебания в воздушной среде (передаётся воздушным путём).

В зависимости от частотного диапазона (от спектра) ультразвук подразделяют на:

-низкочастотный (от 1,12∙10 4 до 1∙10 5 Гц), который передаётся человеку воздушным и контактным путём;

Низкочастотный ультразвук применяется при сварке, пайке, лужении, механической обработке материалов, при кристаллизации металлов, при обезжиривании, при очистке загрязнённых воды и воздуха; в медицине – для резки и соединения биологических тканей, обезболивания, разрушения новообразований, стерилизации инструмента и др.

-высокочастотный (от 1∙10 5 до 1∙10 9 Гц), который передаётся человеку только контактным путём.

Высокочастотный ультразвук применяется в аппаратуре для сбора информации, для контроля, анализа, обработки и передачи сигналов, в дефектоскопии, в радиолокации; в медицине – для диагностики, для лечения различных заболеваний, в офтальмологии, дерматологии и др.

Воздействие на человека.

Ультразвук оказывает существенное влияние на организм человека. Ультразвук способен распространяться во всех средах: газообразной, жидкой и твердой. Нарушает микроокружение мембран клеток, изменяет проницаемость мембран, приводит к возникновению новых синтезов в клетках. Поэтому в организме человека он воздействует не только собственно на органы и ткани, но и на клеточную и другие жидкости.

Длительное систематическое влияние ультразвука, распространяющегося в воздухе, вызывает функциональные нарушения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. У людей, работающих на ультразвуковых установках, отмечают выраженную астению, сосудистую гипотонию, снижение электрической активности сердца и мозга. Изменения ЦНС в начальной фазе проявляются нарушением рефлекторных функций мозга. Характерны жалобы на резкое утомление, головные боли и чувство давления в голове, затруднения при концентрации внимания, торможение мыслительного процесса, на бессонницу.Контактное воздействие высокочастотного ультразвука на руки приводит к нарушению капиллярного кровообращения в кистях рук, снижению болевой чувствительности, т. е. развиваются периферические неврологические нарушения. Установлено, что ультразвуковые колебания могут вызывать изменения костной структуры с разрежением плотности костной ткани.

Профессиональные заболевания зарегистрированы лишь при контактной передаче ультразвука на руки — вегетосенсорная (ангионевроз) или сенсомоторная полиневропатия рук.

Средства и методы защиты от ультразвука.

Существуют требования по ограничению неблагоприятного влияния контактного ультразвука, а именно:

-при разработке нового оборудования должны предусматриваться меры по максимальному ограничению ультразвука, как в источнике возникновения, так и на пути его распространения;

-запрещается непосредственный контакт человека с рабочей поверхностью источника ультразвука и с контактной средой во время возбуждения в ней ультразвука;

-ультразвуковые искатели и датчики, удерживаемые руками оператора, должны иметь форму, обеспечивающую минимальное напряжение мышц, удобное для работы расположение;

-исключается передача ультразвука другим частям тела кроме рук;

-применение дистанционного управления; приспособления для удержания источника ультразвука или предметов, которые могут служит в качестве твердой контактной среды;

-для защиты рук от неблагоприятного воздействия контактного ультразвука в твердых и жидких средах, а также от контактных смазок необходимо применять нарукавники, рукавицы или перчатки (наружные резиновые и внутренние хлопчатобумажные);

-использование звукоизолирующих кожухов. Эти экраны изготавливают из листовой стали или дюралюминия толщиной 1 мм, пластмассы (гетинакса) либо из специальной резины.

Какие могут быть последствия воздействия инфразвука?

Инфразвук приносит вред нашему организму. Звуковые волны, которые мы не слышим, могут повреждать наш вестибулярный нерв и приводить к тошноте, постоянному чувству беспокойства, головным болям и шуму в ушах. Такой эффект мы называем «морской болезнью». Также известно, что инфразвук может приводить к возникновению чувства постоянной усталости и к нарушениям сна.

Главной причиной таких симптомов является разновидность нарушения вегетативной регуляции. Наше тело имеет свои собственные колебания. Частота этих колебаний лежит в диапазоне между 1 и 6 Гц и инфразвук может легко повреждать их.

Что вызывает инфразвуковые колебания?

Существует большое количество естественных причин для возникновения инфразвука. Они могут быть вызваны ветром, воздушными потоками или другими метеорологическими причинами; компрессоры или тяжелые транспортные средства могут также быть причинами возникновения таких волн. Работающие в областях тяжелой промышленности или в больших офисах, где существуют специальные вентиляционные системы, особенно подвержены воздействию инфразвука.

Инфразвуковые волны двигаются очень медленно и имеют большую длину волны. Таким образом, они могут проникать в открытые и большие холлы или в открытые офисные пространства размером больше 20 м.

Инфразвук влияние на человека

Цель: обосновать недостаточность СанПиН в части, касающейся уровня шума; обосновать возможность негативного влияния ряда частот сверхвысокочастотного электромагнитного поля бытовых и промышленных приборов на здоровье человека. Проанализированы недостатки СанПиН; с помощью формулы, полученной из теоретических выкладок и экспериментальных данных, вычислены резонансные частоты ядерных ДНК клеток организма человека, проведено сравнение с частотами бытовых и промышленных приборов. Приведены звуковые частоты в инфра-диапазоне, опасные для человека; определены приборы, чьи сверхвысокие частоты электромагнитного поля негативно влияют на здоровье человека. Возможно, стоит дополнить СанПиН в отношении низкочастотного шума; необходима разработка мер, предохраняющих от воздействия слабых электромагнитных полей ряда бытовых и промышленных приборов, необходимы дополнительные системы защиты от этих полей.

резонансная

1. № СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки». Постановление Госкомсанэпиднадзора России № 36 от 31.10.1996.;URL: http://base.garant.ru/4174553.

2. Жилищный кодекс РФ 29.12.2004 N 188-ФЗ (ред. от 06.07.2016), ст. 17, п. 4; URL:http://www.consultant.ru/document/cons_doc_LAW_51057.

3. Информационный портал о физиотерапии. Дециметровая терапия (ДМВ-терапия); URL:http://www.physiotherapy.ru/factors/electro/elektromagnitnie-izluheniya.html.

4. Ихлов Б.Л., Ощепков А.Ю., Мельниченко А.В., Вольхин И.Л. О некоторых аспектах влияния ЭМП на микроорганизмы // Материалы Международной научно-практической конференции «Новая наука: современное состояние и пути развития». – Стерлитамак, 2016. – Ч. III. – С. 12-13.

5. Ихлов Б.Л., Евсеев А.В., Мельниченко А.В., Ощепков А.Ю. Метод прерывания митоза опухолевых клеток в конечной стадии интерфазы // Сборник статей VIII международной научно-практической конференции «Высокие технологии, фундаментальные и прикладные исследования в физиологии и медицине», 20–22 мая 2015 года. – Санкт-Петербург. – С. 48-55.

6. Ихлов Б.Л., Мельниченко А.В., Ощепков А.Ю. Оценка собственных частот крутильных колебаний ДНК человека. // Материалы Международной научно-практической конференции «Новая наука: современное состояние и пути развития». – Стерлитамак, 2016. – Ч. III. – С. 3–11.

7. Ихлов Б.Л., Мельниченко А.В., Ощепков А.Ю. Резонансное поглощение сверхвысокочастотного электромагнитного поля молекулами ДНК // Современные проблемы науки и образования. – 2016 – № 6; URL: http://www.science-education.ru/article/view?id=25910.

8. Ихлов Б.Л., Ощепков А.Ю., Мельниченко А.В., Вольхин И.Л., Новикова В.В., Чиркова Л.А. О влиянии электромагнитного поля высокой частоты на E. coli. // Современные проблемы науки и образования. – 2016. – № 5; URL: http://science-education.ru/ru/article/view?id=25259.

9. Козьмин Г.В., Егорова В.И. Устойчивость биоценозов в условиях изменяющихся электромагнитных свойств биосферы // Биомед. технологии и радиоэлектроника. – 2006. – № 3. – С. 61-72.

10. Красовский В.О. Актуальность сравнительного спектрального анализа шумов в санитарном надзоре // Гигиена и санитария. – 2012. – № 1. – С. 81-84.

11. Кураев Г.А., Войнов В.Б., Моргалев Ю.Н. Влияние электромагнитных излучений персональных компьютеров на организм человека // Вестник ТГУ. – 2000. – № 269. – С. 8-14.

12. Новиков С.Г. Безопасность жизнедеятельности. Учебно-методический комплекс. Электронный учебник. МЭИ (ТУ). VIII. Производственные вибрации. 3. Действие вибраций на человека. http://ftemk.mpei.ac.ru/bgd/_private/Vibrasiya/VIII_3_deystvie.htm.

13. СанПиН 1.1.2.1002.00. Санитарно-эпидемиологические требования к жилым зданиям и помещениям. 6.1. Допустимые уровни шума. 15.12.2000.; URL:http://ohranatruda.ru/ot_biblio/normativ/data_normativ/9/9079.

14. СанПиН 2.2.4.1191-03. Электромагнитные поля в производственных условиях. – М.: Федеральный центр Госсанэпиднадзора Минздрава России, 2003; URL:http://docs.cntd.ru/document/901853847.

15. Свод правил СП 51.13330.2011. «Защита от шума. Актуализированная редакция СНиП 23-03-2003»; URL:http://docs.cntd.ru/document/1200084097.

16. Севастьянова Л.А., Голант М.Б., Зубенкова Э.С. и др. Действие радиоволн миллиметрового диапазона на нормальные ткани и злокачественные новообразования // Применение миллиметрового излучения низкой интенсивности в биологии и медицине

/ под ред. академика Н.Д. Девяткова. – М.: ИРЭ АН СССР, 1985. – С. 37-49.

17. Терешкина О.В. Влияние низкоинтенсивного электромагнитного излучения крайне высокой частоты на репродуктивную функцию млекопитающих (Экспериментальное исследование): дис. . канд. биол. наук: 03.00.02. – Тула, 2006. – 127 с.

18. Федеральный закон № 52-ФЗ от 30.03.1999 «О санитарно-эпидемиологическом благополучии населения», ст. 27; URL: http://www.consultant.ru/document/cons_doc_LAW_22481/d0260f9fac6324ad782b584771d90b786d4156d7.

19. Auditory Responses to Pulsed Radiofrequency Energy. Bioelectromagnetics Suppl. 8, 2003. – Р.162-73.

20. A.H. Frey. «Human auditory system response to modulated electromagnetic energy.» J AppliedPhysiol 17 (4): 689–92, 1962.

21. Hambling David (3 July 2008). «Microwave ray gun controls crowds with noise». New Scientist. Retrieved 12 January 2014.

22. Lin J.C. Microwave auditory effect – a comparison of some possible transduction mechanisms. J Microwave Power. 1976 Mar; 11(1):77–81. 1976.

23. Lin J.C., 1980. «The microwave auditory phenomenon». Proceedings of the IEEE, 68:67–73. Navy-NSF-supported research.

Цель: показать, что низкие звуковые частоты ниже ПДУ, а также ряд бытовых и промышленных приборов с СВЧ ЭМП ниже ПДУ негативно влияют на человека.

Введение

Как известно, работа с виброприборами со среднечастотным диапазоном 30-125 Гц приводит к развитию сосудистых, нервно-мышечных, костно-суставных и других нарушений через 12–15 лет [12]. Законом установлено, что «условия работы с машинами, механизмами, установками, устройствами, аппаратами, которые являются источниками физических факторов воздействия на человека (такие как шум), не должны оказывать вредное воздействие на человека» [18].

Санитарными нормами установлены нормы допустимого шума в жилых зданиях в дневное и ночное время, превышение которого запрещается [1]. Допустимые уровни шума в жилых помещениях и на территории жилой застройки предусмотрены в [15].

Для звуковых волн в жилых и рабочих помещениях в СанПиН приняты ограничения [13]. Указывается, что, например, для творческой работы уровень шума частоты 31,5 Гц не должен превышать 86 дБ, а для частоты 500 Гц – 49 дБ и т.д.

В [10] указывается на необходимость спектрального анализа шумов в санитарном надзоре, но де исследуется действие резонансный частот.

В СССР был принят предельно допустимый уровень (ПДУ) плотности потока мощности (ППМ) – 10 мкВт/см2, в США – 10 мВт/см2. В ряде стран Западной Европы и США в качестве исходного критерия нормирования закладывался «принцип тепловой нагрузки», который учитывал лишь нарушение теплового гомеостаза организма. Этот подход был использован, например, в Великобритании, где до 1998 г. ПДУ для населения составлял 10 мВт/см, для детей допускалось облучение до 5 мВт/см2. В дальнейшем Великобритания перешла на общеевропейский стандарт, согласно которому для частотного диапазона свыше 400 МГц допускается облучение населения до 1 мВт/см2. Допустимые уровни воздействия на работников и требования к проведению контроля на рабочих местах для электромагнитных полей радиочастот изложены в ГОСТ 12.1.006-84.ПДУ в РФ для населения составляет 10 мкВт/см2[14].

Крайне высокочастотное (КВЧ) электромагнитное поле (ЭМП) ниже ПДУ может негативно влиять на организм [17]. Тем не менее КВЧ-поле используется при лечении самых разнообразных заболеваний, включая злокачественные новообразования [16].

При лечении туберкулеза и других заболеваний также широко используется как вспомогательная сантиметроволновая (СМВ), так и дециметроволновая (ДМВ) терапия. Применяются достаточно большие мощности, чтобы вызвать разогрев. Поскольку разогрев приводит к уменьшению глубины проникновения волн, в случае сантиметровых волн (чем выше частота, тем меньше глубина проникновения) используют слаботепловую СМВ-терапию. Для СМВ-терапии используют аппарат «Луч-4», с выходной мощностью 0,7–20 Вт и плотностью потока мощности 7-200 мВт/см2, что многократно превышает ПДУ. В связи с этим введены строгие правила техники безопасности.

Аппараты СМВ- и ДМВ-терапии должны помещаться в объем, изолированный материалом из хлопчатобумажной ткани с микропроводом. Излучатель во время процедур должен быть направлен в сторону наружной стенки. При контактном расположении излучателя портативные аппараты могут эксплуатироваться без экранирующей кабины, но они должны быть удалены от рабочего места медсестры на 2–3 м. Величина предельно допустимого уровня (ПДУ) плотности потока мощности (энергии): при облучении в течение всего рабочего дня – 10 мкВт/см2; при облучении не более 2 ч за рабочий день 100 мкВт/см2; при облучении не более 20 мин за рабочий день – 1 мВт/см2 (при условии использования защитных очков, типа ОРЗ-5). Следует избегать прямого воздействия дециметровых волн большой интенсивности на глаза и половые органы.

Для ДМВ-терапии приняты дополнительные правила: процедуры разрешается проводить только на стульях и кушетках, изготовленных из изоляционного материала; нижний край штор экранирующей кабины должен отстоять от пола не более чем на 2 см; края шторы, образующие вход в кабину, должны заходить друг за друга минимум на 10–15 см; пациент должен находиться как можно дальше от экранирующих поверхностей, чтобы максимально исключить действие не учитываемой рассеянной энергии; во время процедуры пациент не должен касаться труб водопровода, канализации и отопления; при контактной методике воздействия нельзя сильно прижимать излучатель к телу, его нужно устанавливать, чуть касаясь кожи или слизистой оболочки, сильное прижатие излучателя может привести к нарушению регионарного кровообращения или даже к ожогу, который может проявиться не сразу, а через 1–2 дня при последующих процедурах; рабочую поверхность излучателей необходимо обрабатывать дезинфицирующим раствором, защитный колпачок от полостных излучателей после проведения процедуры дезинфицируют путем кипячения в воде; в работе аппаратов необходимо делать перерывы на 10 мин. после каждого часа работы [3].

Опасные для человеческого организма сверхвысокие частоты ЭМП используются в ряде других приборов.

Радары работают на частотах 0.5 ГГц – 15 ГГц, системы спутниковой связи – примерно 2.38 ГГц, СВЧ-печи – 2.45 ГГц (хотя последнее следует исключить, они имеют несколько уровней защиты).

Развитие производства энергосберегающих ламп в направлении СВЧ было заброшено. Правда, не по причинам, связанным с безопасностью.

СВЧ-излучение ламп подсветки ЖК-мониторов – порядка 0,5 мВт, его не стоит опасаться также в виду того, что оно является паразитным, без фиксированной частоты.

Роутеры Wi-Fi – 2.4-2.4835 ГГц (с частотой шага 5МГц), 5.18-5.24ГГц и 5.745-5.825ГГц.

Системы сотовой связи используют частоты 0,463 ГГц – 1,99 ГГц. Стандарты GSM-850/900 нас не интересует. Стандарт GSM-1800: частоты передачи MS и приёма BTS uplink – 1.71-1.785 ГГц; downlink – 1.805-1.880 ГГц. Стандарт GSM-1900, используется в США, Канаде, отдельных странах Латинской Америки и Африки: частоты передачи MS и приёма BTS – 1.85-1.91 ГГц; 1.93-1.99 ГГц.

Для сетей 3-го поколения 3G/UMTS 2100 – 1.92-2.17 ГГц. Частоты 4G «Основа Телеком» LTE TDD – 2.3-2.34 ГГц. Частотный спектр для сетей 4-го поколения, 4G, LTE-частоты: (LTE FDD) в диапазоне 2.6 ГГц (band 7), за исключением сетей LTE TDD — МТС в Москве (2.6 ГГц, band 38) и «Вайнах Телеком» в Чеченской Республике (2.3 ГГц, band 40).

В НИОКР (со сверхвысокочастотным ЭПР и др.) исследователи могут использовать определенные сверхвысокие частоты, негативно влияющие на организм. Например, СВЧ ЭМП, модулированное частотно мегагерцами, воздействует на центральную и вегетативную нервные системы. Так, Алан Фрей обнаружил, действие такого излучения может вызвать ощущение укола иголкой, удара палкой или ощущение звука, причем даже у глухих (A. Frey, AnnalsofPhysics, 1960, 1962; см. также [19–23]).

В СВЧ-диапазоне работают процессоры современных компьютеров.

Celeron-450 – тактовая частота 0,45ГГц, Pentium (или 586, или Р5) – частоты: 60, 66, 75, 90, 100, 120, 133, 150, 166, 200 Мгц, PentiumPro — 150, 166, 180, 200 МГц, PentiumII – 233, 266, 300, 333, 350, 400, 450 Мгц,CeleronI – 266, 300, 333, 366, 400, 433, 466, 500, 533 МГцCeleronII — 566, 600, 633, 667, 700, 733, 766, 800, 850, 900. Pentium III – 533, 550, 600, 650, 667, 700, 733, 750, 800, 850, 866, 933 МГц, 1, 1.13, 1.2 ГГц и выше. Эти модели, а также более ранние, нас не интересуют.

Pentium IV– 1.3, 1.4, 1.5, 1.8, 1.9, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.06, 3.2, 3,4 и более ГГц.

Центральные процессоры, работающие с системной шиной с частотой 800 МГц, могут иметь следующие частоты: 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 ГГц. С системной шиной 533 МГц – 2.26, 2.4, 2.53, 2.66, 2.8, 3.06 ГГц. С системной шиной 400 МГц – 1.7, 1.8, 1.9, 2.0, 2.2, 2.4, 2.5, 2.6 ГГц.

MobilePentium4-M– 1.4-2.6 ГГц, Pentium 4F – 3.2-3.6 ГГц, Pentium4F, D0, D – 2.8-3.4 ГГц

PentiumExtremeEdition – 3.2, 3.46, 3.73 ГГц.

Xeon: Nocona, Irwindale, Cranford, Potomac, PaxvilleDP (2.8 ГГц), PaxvilleMP (2.67–3.0 ГГц), Dempsey (2.67–3.73 ГГц).

Woodcrest – 1.6–3.0 ГГц; Clovertown – 1.6-2.66 ГГц; PentiumDual-Core – 1.60; 1.73; 1.86 ГГц,

(Xeon LV) (Sossaman) 2.0 ГГц

Intel Core2 имеет модели: Conroe (1.86–3.0ГГц), Allendale (1.6–2.6 ГГц), Conroe XE (2.93, 3.2 ГГц,), Merom (1.06–2.6 ГГц), Kentsfield (2.4–3.0 ГГц), Wolfdale/Yorkfield (2.53–3.33 ГГц),

PentiumDualCore имеет модели: Merom-2M (1.46–1.86 ГГц), Allendale (1.6–2.4 ГГц), Wolfdale (2.8–2.93 ГГц).

Intel Atom – 0.8–2.0 ГГц; Diamondville (1.6–1.66 ГГц).

Intel Core i3имеетмодели: Clarkdale (2.93–3.33 ГГц,), Arrandale (1.2–2.53 ГГц).

Intel Core i5 имеет модели: Lynnfield (2.4–2.8 ГГц), Clarkdale (3.2–3.6 Ггц), Arrandale (1.06–2.67 ГГц).

Intel Core i7, имеет модели: Gulftown (3.2–3.46 ГГц), Bloomfield (2.66–3.33 ГГц), Lynnfield (2.53–3.06 ГГц), Arrandale (1.06–2.8 ГГц).

IntelCorei7 ExtremeEditionимеетмодели: Bloomfield (3.2–3.33 ГГц), Gulftown (3.33–3.46 ГГц).

Intel Core i3 – 2.5–3.4 ГГц, Intel Core i5 — 2.3–3.3 ГГц, Intel Core i7 – 2.8–3.4 ГГц.

IntelCorei7 ExtremeEdition имеет модели: Bloomfield (3.2–3.33 ГГц), Gulftown (3.33–3.46 ГГц).

Итого, частоты процессоров охватывают набор частот 0,06 ГГц — 1,8 ГГц (мы увидим, что он нам не нужен) и дискретно-непрерывный диапазон 1,9–3,73 ГГц.

Потребляемая компьютером мощность – 60 Вт, подавляющий процент расходуется на тепло, на излучение остается порядка 0,5 Вт. Поскольку платы – многослойные, краски содержат тяжелые металлы, плюс экранирование металлического корпуса, на расстоянии 50 см от системного блока плотность потока мощности СВЧ излучения явно не превышает ПДУ.

Общая характеристика воздействия ЭМП компьютеров дана в [11], однако она не касается резонансного действия.

Анализ

Принятые 25.9.1985 (с изменениями от 18.1.1992 и 23.7.1993) правила обеспечивали недопущение выполнения в квартире, подвале или придомовой территории работ и иных действий, создающих повышенный шум и вибрацию. В новом Жилищном Кодексе отмечается лишь необходимость «осуществлять пользование жилыми помещениями с учетом соблюдения прав и законных интересов проживающих в жилом помещении граждан» [2].

Для звуковых волн по СанПиН – чем ниже частота, тем больше допустимая мощность [18]. Для 500 Гц, т.е. для пения в 1-й октаве, дневной допустимый уровень – 39 дБ, а для 31,5 Гц – 79 дБ. Для творческой деятельности, как мы видели выше, та же закономерность, хотя уже 55 дБ существенно снижает продуктивность умственной деятельности.

Частоты ниже 31,5 ГГц вообще не обозначены.

Между тем в случае резонансных инфразвуковых волн область резонанса для головы в положении сидя при вертикальных вибрациях располагается в зоне между 20–30 Гц, при горизонтальных – 1.5–2 Гц. Расстройство зрительных восприятий проявляется в частотном диапазоне между 60 и 90 Гц, что соответствует резонансу глазных яблок. Для органов, расположенных в грудной клетке и брюшной полости, резонансными являются частоты 3– 3.5 Гц. Для всего тела в положении сидя резонанс наступает на частотах 4–6 Гц.

Оцените статью
TutShema
Добавить комментарий