Индуктивность катушки в чем измеряется

Вопросы и ответы по теме катушек индуктивности, как они работают, в чем измеряется индуктивность и т.п.

Как известно, вокруг каждого проводника, по которому протекает электрический ток, возникают силовые линии. Число этих линий зависит от силы тока. Чем сильнее ток, тем больше силовых линий появляется вокруг провода.

При прохождении по проводнику постоянного тока количество силовых линий не меняется; при прохождении по проводу переменного тока или при изменении силы постоянного тока, число силовых линий возрастает при увеличении силы тока и уменьшается при ослаблении его.

Мы можем себе представить, что при увеличении силы тока силовые линии как бы “разворачиваются” из провода, выходят из него всё в большем количестве, а при ослаблении тока как бы сжимаются, сворачиваются в провод.

Из теории электротехники известно, что в тех случаях, когда какой-либо проводник пересекается силовыми линиями, то в этом проводнике возникает электрический ток.

Это явление носит название индукции. Но возникновение в проводнике тока имеет место не только тогда, когда проводник пересекается силовыми линиями “чужого поля”, т. е. поля, созданного соседним проводником, а также и тогда, когда провод пересекается собственными силовыми линиями, т. е. теми линиями, которые созданы в нём тем током, который протекает по нему от какого-либо источника.

Совершенно естественно, что в том случае, когда по проводнику протекает постоянный ток -никакого пересечения провода силовыми линиями происходить не будет.

Если же сила тока увеличивается или уменьшается, то вокруг провода разворачиваются силовые линии или, наоборот, сворачиваются и при этом они пересекают провод, вследствие чего в последнем будет возникать дополнительное напряжение.

Появление в проводе дополнительного напряжения, вызванного своими же собственными силовыми линиями, носит название индуктивности. Индуктированный ток имеет направление, обратное начальному току в том случае, когда сила начального тока увеличивается и совпадает с ним по направлению, когда сила начального тока уменьшается.

Следовательно, можно сказать, что индуктированный ток как бы стремится противодействовать всем изменениям начального тока, так как если начальный ток усиливается, то индуктированный направляется в противоположную сторону и как бы ослабляет его, когда же первичный ток ослабляется, то индуктированный ток течёт в направлении начального, складывается с ним.

Явление индуктивности наблюдается во всех проводниках любых форм, но в прямолинейных проводниках оно сравнительно слабо; в прямолинейных проводниках, свитых в катушку, явление индуктивности заметно чрезвычайно резко.

Это объясняется тем, что силовые линии, возникающие вокруг каждого витка катушки, пересекают не только свой виток, но и соседние витки, индуктируя в них также напряжение; вследствие этого токи индуктивности в проводниках, свитых в катушку, получаются значительно более сильными.

Как измерить индуктивность катушки, дросселя, трансформатора — мультиметром

Магнитное поле и проводник, катушка

Рис. 1. Магнитное поле и проводник, катушка.

Что такое генри?

Генри — единица индуктивности. Индуктивностью в один генри обладает такая катушка, изменение силы тока в которой на один ампер в секунду создаёт электродвижущую силу в один вольт.

Практически генри является величиной довольно большой. Этой величиной пользуются при определении индуктивности трансформаторов и дросселей низкой частоты.

При определении индуктивности высокочастотных катушек обычно пользуются единицами в тысячу или в миллион раз меньшими, которые называются миллигенри и микрогенри. Одна тысячная микрогенри часто называется сантиметром, т. е. 1 ООО см равняются 1 мкГн.

Закон Ленца

Закон Ленца говорит нам, что индуцированный ток направлен так, чтобы препятствовать той причине, которая его вызвала. Например, подаём мы на катушку напряжение. В катушке образуется магнитное поле которое в момент включения пересекает витки катушки и наводит там электродвижущую силу самоиндукции. По закону Ленца индуцированная ЭДС самоиндукции будет направлена навстречу току который её вызвал.

Если подавать (а) и снимать (б) напряжение с катушки, то произойдёт следующее. Магнитное поле будет то появляться, то исчезать. В результате изменяющееся магнитное поле будет пересекать витки катушки и индуцировать в ней ЭДС.

Индуктивность и дроссели

Новое понятие ЭДС самоиндукции. Давайте рассмотрим её поподробнее.

ЭДС самоиндукции

Если подавать и снимать напряжение с электрической катушки, то магнитное поле будет появляться, исчезать, появляться, исчезать… В итоге получаем магнитное поле, которое постоянно меняется. Проходя через витки катушки магнитное поле будет индуцировать в ней электродвижущую силу, которая называется ЭДС самоиндукции.

Коэффициент самоиндукции – это величина ЭДС самоиндукции, возникающей при изменении тока в единицу времени. Коэффициент самоиндукции измеряется в Генри (Гн).

Индуктивностью в 1 Генри обладает катушка. В которой при изменении тока на 1 Ампер в 1 секунду возникает ЭДС самоиндукции в 1 Вольт.

Давайте напряжение цепи катушки обозначим через U, результирующее напряжение Uр, а ЭДС самоиндукции Ес, тогда получим следующие формулы:

В момент замыкания цепи результирующее напряжение будет следующим:

Результирующее напряжение в момент размыкания цепи

А в момент размыкания цепи:

Результирующее напряжение в момент замыкания цепи

Величина ЭДС самоиндукции может многократно превышать напряжение источника тока. Поэтому при размыкании цепей с большой индуктивностью появляется дуга, и соответственно обгорают контакты.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

I — сила тока в катушке , А

U — напряжение в катушке, В

R — сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности — источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.

катушка индуктивности с воздушным сердечником

Но где у нее сердечник? Воздух — это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

виды катушек индуктивности

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

ферритовые сердечники катушка индуктивности

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

катушка индуктивности с железным сердечником

Расчет катушки индуктивности — онлайн-калькулятор

Расчет катушки индуктивности без сердечника при помощи онлайн-калькулятора — рассчитать многослойную катушку индуктивности на количество витков, сопротивление.

Все калькуляторы
Также можно рассчитать

  • Конфигурация
  • Расчёт
  • Сохранить
  • Справка
  • Партнерские скидки
  • Виджет на сайт
  • Комментарии

Запуск приложения
Выберите способ сохранения

Скачать PDF
Скачать расчёт с выбранными параметрами в формате PDF — чертежи + данные.

Поделиться
Поделиться ссылкой на расчёт в Facebook, ВКонтакте, Google+ и т.д.

Сканировать QR-код
Получить ссылку на расчет с параметрами через сканирование QR-кода
Разместите калькулятор у себя на сайте БЕСПЛАТНО

Катушка индуктивности — это пассивный электронный компонент, в виде намотанного в спираль изолированного проводника. Основной характеристикой катушки является индуктивность, т.е. способность преобразования электрической энергии в энергию магнитного поля, измеряется в Генри (Гн). Катушка может иметь цилиндрический или тороидальный каркас (сердечник) из феррита, который позволяет в разы повысить индуктивность катушки. Также, индуктивность катушки прямо пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Обращаем внимание, что важным условием работы устройства является наличие изоляции между витками катушки, они не должны замыкаться друг с другом.

При помощи калькулятора расчета индуктивности катушки онлайн можно вычислить количество витков и слоев обмотки, общую длину проводника, а также сопротивление катушки постоянному току по требуемым значениям индуктивности. Метод расчета основан на формуле решения эллиптических интегралов Максвелла, в котором катушка представляется как множество соосных бесконечно тонких круговых проводников. Вычисления справедливы для однослойных и многослойных катушек без сердечника. Теоретическое обоснование представлено ниже.

Обращаем внимание, в нашем калькуляторе учитывается расширение диаметра катушки для каждого последующего слоя. Эта поправка влияет на увеличение длины витка, и соответственно на общую длину провода и активное сопротивление катушки индуктивности.

Расчет индуктивности катушки

  • L – индуктивность катушки;
  • D – диаметр витка;
  • N – число витков;
  • g – количество слоев;
  • h – длина проводника.

Как рассчитать индуктивность катушки?

  1. Введите требуемую индуктивность в соответствующих единицах измерения.
  2. Введите диаметр каркаса.
  3. Введите длину намотки.
  4. Укажите диаметр проводника по сердцевине и по изоляции.
  5. Нажмите кнопку «Рассчитать»

Смежные нормативные документы:

  • ГОСТ 28997-91 «Сердечники для катушек индуктивности и трансформаторов»
  • ГОСТ Р МЭК 1007-96 «Трансформаторы и катушки индуктивности»
  • ГОСТ Р 52002-2003 «Электротехника»

Катушка индуктивности

Катушка индуктивности

Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры.

Катушки индуктивности на принципиальных схемах обозначаются латинской буквой “L” и имеют следующее изображение.

Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки.

Бескаркасные катушки

Катушки для СВЧ аппаратуры называются микрополосковыми линиями. Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт.

Разнообразные катушки индуктивности

Основной параметр катушки это её индуктивность. Величина индуктивности измеряется в Генри (Гн, англ. – «H»). Это достаточно большая величина и поэтому на практике применяют меньшие значения (мГн, mH – миллигенри и мкГн, μH– микрогенри) соответственно 10 -3 и 10 -6 Генри. Величина индуктивности катушки указывается рядом с её условным изображением (например, 100 μH). Чтобы не запутаться в микрогенри и миллигенри, советую узнать, что такое сокращённая запись численных величин.

Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки.

Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник. Катушка индуктивности с сердечником изображается на схемах следующим образом.

В реальности катушка с сердечником может выглядеть так.

Внешний вид катушки индуктивности с сердечником

Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так.

Катушка с подстроечным сердечником вживую выглядит так.

Катушка с подстроечным сердечником

Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют.

Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так.

В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности.

Ещё один параметр, который встречается достаточно часто это добротность контура. Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350.

На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн.

В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.

Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять — шесть работающих радиостанций. Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор. Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту.

После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.

Примеров использования катушки индуктивности великое множество. На рисунке изображён весьма несложный, но хорошо зарекомендовавший себя в работе сетевой фильтр.

Схема сетевого фильтра 220V

Фильтр состоит из двух дросселей (катушек индуктивности) L1 и L2 и двух конденсаторов С1 и С2. на старых схемах дроссели могут обозначаться как Др1 и Др2. Сейчас это редкость. Катушки индуктивности намотаны проводом ПЭЛ-0,5 – 1,5 мм. на каркасе диаметром 5 миллиметров и содержат по 30 витков каждая. Очень хорошо параллельно сети 220V подключить варистор. Тогда защита от бросков сетевого напряжения будет практически полной. В качестве конденсаторов лучше не использовать керамические, а поискать старые, но надёжные МБМ на напряжение не менее 400V.

Вот так выглядит дроссель входного фильтра компьютероного блока питания ATX.

Сетевой фильтр компьютерного блока питания

Как видно, он намотан на кольцеобразном сердечнике. На схеме он обозначается следующим образом. Точками отмечены места начала намотки провода. Это бывает важно, так как это влият на направление магнитного потока.

Выходные выпрямители современного импульсного блока питания всегда конструируют по двухполупериодным схемам. Широко известный выпрямительный диодный мост, у которого большие потери практически не используют. В двухполупериодных выпрямителях используют сборки из двух диодов Шоттки. Самая важная особенность выпрямителей в импульсных блоках питания это фильтры, которые начинаются с дросселя (индуктивности).

Напряжение, снимаемое с выхода выпрямителя обладающего индуктивным фильтром, зависит кроме амплитуды ещё и от скважности импульсов, поэтому очень легко регулировать выходное напряжение, регулируя скважность входного. Процесс регулирования скважности импульсов называют широтно-импульсной модуляцией (ШИМ), а в качестве управляющей микросхемы используют ШИМ контроллер.

Поскольку амплитуда напряжения на входах всех выпрямителей изменяется одинаково, то стабилизируя одно напряжение, ШИМ контроллер стабилизирует все. Для увеличения эффекта, дроссели всех фильтров намотаны на общем магнитопроводе.

Именно таким образом устроены выходные цепи компьютерного блока питания формата AT и ATX. На его печатной плате легко обнаружить дроссель с общим магнитопроводом. Вот так он выглядит на плате.

Дроссель в выходных выпрямителях блока питания

Как уже говорилось, этот дроссель не только фильтрует высокочастотные помехи, но и играет важную роль в стабилизации выходных напряжений +12, -12, +5, -5. Если выпаять этот дроссель из схемы, то блок питания будет работать, но вот выходные напряжения будут «гулять» причём в очень больших пределах – проверено на практике.

Так магнитопровод у такого дросселя общий, а катушки индуктивности электрически не связаны, то на схемах такой дроссель обозначают так.

Здесь цифра после точки (L1.1; L1.2 и т.д.) указывает на порядковый номер катушки на принципиальной схеме.

Ещё одно очень хорошо известное применение катушки индуктивности это использование её в системах зажигания транспортных средств. Здесь катушка индуктивности работает как импульсный трансформатор. Она преобразует напряжение 12V с аккумулятора в высокое напряжение порядка нескольких десятков тысяч вольт, которого достаточно для образования искры в свече зажигания.

Когда через первичную обмотку катушки зажигания протекает ток, катушка запасает энергию в своём магнитном поле. При прекращении прохождения тока в первичной обмотке пропадающее магнитное поле индуцирует во вторичной обмотке мощный короткий импульс напряжением 25 – 35 киловольт.

Импульсный трансформатор из тех же катушек индуктивности является основным узлом хорошо известного устройства для самообороны как электорошокер. Схем может быть несколько, но принцип один: преобразование низкого напряжения от небольшой батарейки или аккумулятора в импульс слабого тока, но очень высокого напряжения. У серьёзных моделей напряжение может достигать 75 – 80 киловольт.

Как измерить индуктивность катушки

Катушки индуктивности — проводники, обладающие высокими показателями инерционности, за счет чего они могут менять напряжение в цепи. Они широко используются в электрооборудовании, при эксплуатации катушек необходимо уметь определять параметры их индуктивности.

Для чего нужно измерение индуктивности катушек

Индукционные катушки, или индукторы, — устройство в электроизоляционном корпусе, в котором токопроводящие жилы замотаны на цилиндр или тор, напоминающий по форме бублик. Такое расположение проводников создает магнитное поле и провоцирует возникновение индуктивности, при которой электрическая энергия преобразуется в магнитную. Если напряжение, проходящее через катушку, начинает расти благодаря явлению самоиндукции и накоплению тока, затем его величина снижается. Таким образом катушка индуктивности стабилизирует напряжение и преобразует переменный ток в постоянный.

Эксплуатация катушек индуктивности очень востребована за счет широкого диапазона их функций:

  • они стабилизируют ток в цепи и предотвращают короткие замыкания;
  • поддерживают ток в цепи после размыкания;
  • используются в устройствах, для работы которых нужны постоянные показатели тока и частоты;
  • применяются как накопитель и источник энергии.

Измерение индуктивности катушек необходимо для их корректной эксплуатации — в противном случае можно допустить сбои в работе оборудования и его выход из строя.

Правила измерения индуктивности катушки

Индуктивность обозначается литерой L, измеряется в генри. Измеряется индуктивность катушек разными способами, но наиболее быстрым и простым будет использование мультиметра.

Итак, как измерить индуктивность катушки мультиметром? Это максимально простой способ — нужно выставить прибор в режим Lx, диапазон измеряемых величин индуктивности, подключить черный провод к гнезду COM, а красный — к mA/Lx, и щупом дотронуться до катушки.

В нашем каталоге можно приобрести катушки индуктивности с различными показателями индуктивности для оборудования, работающего в разном частотном диапазоне. При подборе индуктора изучите описания в товарных карточках, или проконсультируйтесь с нашими специалистами — связаться с ними можно по телефонам вверху страницы или в форме обратного звонка.

Единицы измерения индуктивности в СГС и связанных с ней систем

В Гауссовой системе единиц и системе СГСМ (это варианты системы СГС), сантиметр — единица измерения индуктивности. Соотношение индуктивности в этих системах с генри задает выражение:

Иногда, чтобы не было путаницы для сантиметра, как единицы индуктивности используют название абгенри.

В системе СГСЭ (расширение системы СГС) единица индуктивности считается безразмерной или ее называют статгенри:

[1статгенриapprox 8,987552cdot ^Гн.]

Примеры задач с решением

Задание. Получите единицу измерения индуктивности (Гн), выраженную через основные единицы системы СИ используя выражение для энергии магнитного поля.

Решение. В качестве основы для решения задачи нам следует взять выражение:

Из него получим, что:

Используем выражение (1.2) для получения единиц измерения $L$ выраженных через основные единицы СИ:

где использовано $left[E_Iright]=Дж=Нcdot м;; left[Iright]=А.$

Ответ. Исходя из заданного выражения, мы получили, что генри — единица измерения индуктивности через основные единицы СИ выражается как: $Гн=frac.$

Задание. Какова индуктивность катушки в колебательном контуре, если при емкости конденсатора равной $C=50пФ$ частота свободных колебаний равна $nu =10МГц$? Проверьте, полученную формулу, в каких единицах измеряется полученная индуктивность?textit<>

Решение. Сделаем рисунок.

Единица измерения индуктивности, пример 1

В данном колебательном контуре сопротивление отсутствует, частота колебаний связана с параметрами, характеризующими наш контур как:

Из формулы (2.1) выразим искомую индуктивность:

Проведем вычисления индуктивности контура, предварительно переведя имеющиеся величины в единицы системы СИ:

Ответ. $L$=,005$ Гн

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Электрическая индуктивность

Индуктивностью называется свойство проводника препятствовать изменениям проходящего через него тока. Индуктивность измеряется в генри(Гн).

Индуктивностью в 1 Гн обладает электрическая цепь, в которой возникает ЭДС самоиндукции в 1 Вольт при равномерном изменении тока в этой цепи, со скоростью 1 Ампер в секунду.

Сопротивление, которое преобразует электрическую энергию в тепловую, называется активным сопротивлением. Активным сопротивлением индуктивности является электрическое сопротивление провода её обмотки при прохождении через неё постоянного тока. При этом на обмотке выделяется тепловая мощность.

Реактивным сопротивлением индуктивности является сопротивление, оказываемое катушкой при прохождении через нее переменного тока. Добротностью называется отношение реактивного сопротивления индуктивности к её активному сопротивлению.

Индуктивности находят широкое применение в РЭА в составе колебательных контуров и различных фильтрах.

Индуктивности различных типов в нашем каталоге

  • Магазины и оптовые отделы
  • Видео
  • Новости
  • Каталог производителей
  • Каталоги автозапчастей
  • Акции и спецпредложения
  • Калькуляторы
  • Обратная связь
Оцените статью
TutShema
Добавить комментарий