Действующее значение напряжения формула

Переменный ток, как и постоянный, оказывает тепловое, механическое, магнитное и химическое действие. В формулы расчета теплового, механического, магнитного, и химического действия переменного тока. Действующим значением переменного тока называется постоянный ток, который за время одного периода оказывает такое тепловое (механическое и др.) действие, как и данный переменный ток. Действующее значение для данного переменного тока есть величина постоянная и

равная амплитудному значению, деленному на , т.е.

Для доказательства этого рассмотрим тепловое действие тока.

Тепловое действие постоянного тока определяется по закону Джоуля – Ленца:

где Т – время, равное одному периоду.

Такое же количество теплоты в данном проводнике за это время выделится при переменном токе

i = I m sinωt . Тогда формула (3.2) для переменного тока примет вид:

где I – действующее значение переменного тока.

Из формулы (3.3) можно записать:

где Р – средняя мощность переменного тока за период. Мгновенная мощность синусоидального тока равна:

Как видно из формулы (3.5), мгновенная мощность переменного тока выражается двумя слагаемыми. Первое слагаемое является величиной постоянной и от времени не зависит, а второе – изменяется по синусоидальному закону и в сумме за период равно нулю.

Следовательно, средняя мощность переменного тока может быть выражена формулой:

Из равенства (3.4) и (3.6) можно записать:

Все определения и соотношения действующего значения переменного тока справедливы и для переменного напряжения и ЭДС.

Амперметры и вольтметры при изменении переменного тока и напряжения чаще всего показывают их действующие значения, так как принцип работы их основан на механическом или тепловом действии тока.

Определим амплитудное значение напряжения в сети, если при сопротивлении цепи 40 Ом амперметр показывает ток 5,5 А.

Из закона Ома напряжение равно U = IR. Подставим вместо I и R их значения, получим действующее значение напряжения U=5,5·40 = 220 B, а так как то U m =1,41·220 = 310,2 B.

В электротехнике при расчете выпрямителей и электрических машин приходится иметь дело со средними значениями переменного тока. Для переменного тока, изменяющегося по синусоидальному закону, среднее значение тока за период будет равно нулю. Поэтому среднее значение синусоидального закона тока (ЭДС, напряжения) определяется за половину периода. Средним значением силы переменного тока (ЭДС, напряжения) называется среднее значение из всех мгновенных значений силы тока (ЭДС, напряжения) за положительный полупериод. Для синусоидального тока

Аналогично определяются средние значения синусоидальных переменных ЭДС и напряжений.

Ток, ЭДС и напряжение, меняющиеся по синусоидальному закону, можно представить как проекцию радиус-вектора, вращающегося против часовой стрелки с постоянной угловой скоростью ω и равного по модулю амплитудному значению этих величин (рис.3.2, a).

Амплитуда, размах, действующее значение. Виды значений переменного тока. Ликбез.

Screenshot_35.jpg

Screenshot_33.jpg

Screenshot_31.jpg

Screenshot_32.jpg

Screenshot_30.jpg

Screenshot_37.jpg

Screenshot_38.jpg

Проекция радиус-вектора на ось y запишется в таком виде:

U y = U m sinωt (3.9)

Если изменение проекции радиус-вектора напряжения со временем развернуть на плоскости, то получим синусоиду (рис. 3.2, б ).

В случае, когда в начальный момент радиус-вектор не лежит на оси x, а смещен на угол ψ по ходу его вращения, то его проекция на ось y запишется так:

U y = U m sin(ωt+ψ) (3.10)

Когда же в начальный момент времени радиус-вектор повернут относительно оси x на угол ψ против направления вращения радиус-вектора, то проекция его на ось y выразится:

U y = U m sin(ωt+ψ) (3.10)

Из геометрии известно, что алгебраическая сумма проекций двух векторов равна проекции вектора, представляющего сумму данных векторов. Следовательно, сложение одноименных синусоидальных электрических величин (проекций векторов) можно осуществить сложением векторов, представляющих амплитудные значения этих электрических величин. При этом наглядно представляется не только сумма или разность векторов, но и сдвиг фаз между электрическими величинами.

Совокупность векторов, изображающих действующее или амплитудные значения синусоидальных электрических величин, представляет собой векторную диаграмму.

При построении векторных диаграмм один из векторов обычно совмещают с осью x , а другие размещают по одну или другую сторону согласно сдвигу фаз. Сложение векторов осуществляется по правилу параллелограмма или по правилу многоугольника.

Вопросы для самоконтроля

1. Что называется действующим значением переменного тока?

2. Напишите формулу, показывающую связь действующего значения переменного тока с его амплитудой.

Что такое действующее, среднеквадратичное, эффективное напряжение или ток

Говоря о величине, изменяющейся по синусоидальному (гармоническому) закону, можно за половину периода определить ее среднее значение. Поскольку ток в сети у нас в подавляющем большинстве случаев синусоидальный, то для этого тока также легко может быть найдена средняя его величина (за половину периода), достаточно прибегнуть к операции интегрирования, установив пределы от 0 до Т/2. В результате получим:

Среднее значение переменного синусоидального тока

Подставив Пи = 3,14, найдем среднюю, за половину периода, величину синусоидального тока в зависимости от его амплитуды. Аналогичным образом находится среднее значение синусоидальной ЭДС или синусоидального напряжения U:

среднее значение синусоидальной ЭДС и синусоидального напряжения

Действующее значение тока I или напряжения U

Однако среднее значение не так широко применяется на практике, как действующее значение синусоидального тока или напряжения. Действующее значение синусоидально меняющейся во времени величины — есть среднеквадратичное, другими словами — эффективное ее значение.

Что такое действующее, среднеквадратичное, эффективное напряжение или ток

Эффективное (или действующее) значение тока или напряжения находится так же, путем интегрирования, но уже по отношению к квадратам, и с последующим извлечением квадратного корня, причем пределы интегрирования теперь — целый период синусоидальной функции.

Итак, для тока будем иметь:

Эффективное значение тока

Подставив значение корня из 2, получим формулу для нахождения эффективного (действующего, среднеквадратичного) значения тока, напряжения, ЭДС — по отношению к амплитудному значению. Эту формулу можно встретить очень часто, ее используют всюду в расчетах, связанных с цепями переменного синусоидального тока:

Эффективное значение ЭДС и напряжения

С практической точки зрения, если сравнить тепловое действие тока переменного синусоидального с тепловым действием тока постоянного непрерывного, на протяжении одного и того же периода времени, на одной и той же активной нагрузке, то выяснится, что выделенная за период синусоидального переменного тока теплота окажется равна выделенной за это же время теплоте от тока постоянного, при условии, что величина постоянного тока будет меньше амплитуды тока переменного в корень из 2 раз:

Величина постоянного тока будет меньше амплитуды тока переменного в корень из 2 раз

Это значит, что действующее (эффективное, среднеквадратичное) значение синусоидального переменного тока численно равно такому значению постоянного тока, при котором тепловое действие (выделяемое количество теплоты) этого постоянного тока на активном сопротивлении за один период синусоиды равно тепловому действию данного синусоидального тока за тот же период.

Аналогичным образом находится действующее (эффективное, среднеквадратичное) значение синусоидального напряжения или синусоидальной ЭДС.

Мультиметр

Подавляющее большинство современных портативных измерительных приборов, измеряя переменный ток или переменное напряжение, показывают именно действующее значение измеряемой величины, то есть среднеквадратичную величину, а не ее амплитуду и не среднее значение за полпериода.

Если других уточняющих настроек на приборе нет, а стоит значок ~I или ~U – измерены будут действующие значения тока и напряжения. Обозначения для конкретно амплитуды или конкретно действующего — Im (m — maximum – максимум, амплитуда) или Irms (rms — Root Mean Square – среднеквадратичное значение).

  • Как разобрать асинхронный электродвигатель
  • Что такое амперметр, виды, устройство и принцип работы
  • Гальванические элементы — устройство, принцип работы, виды и основные характеристики

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » В помощь начинающим электрикам

Подписывайтесь на наш канал в Telegram: Домашняя электрика

Поделитесь этой статьей с друзьями:

Эффективные (действующие) значения напряжения и силы тока.

В цепи переменного тока его направление и амплитуда меняются с частотой 50 Гц. Однако выделяемая на нагрузке энергия зависит не от направления тока в цепи, а лишь от его абсолютного значения. Всегда можно подобрать такое значение силы постоянного тока, чтобы энергия, выделяемая за некоторое время этим током на участке цепи с сопротивлением R, равнялась энер­гии, выделяемой за то же время переменным током.

Действующее значение силы переменного тока равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время. Оно определяется по формуле:

Эффективные действующие значения напряжения и силы тока

.

Действующее значение напряжения определяется аналогично:

Эффективные действующие значения напряжения и силы тока

.

Мощность, определяемая с использованием действующих значений силы тока и напряжения Р = IU, равна средней мощности переменного тока при совпадении фаз колебаний тока и напряжения:

Эффективные действующие значения напряжения и силы тока

.

Последнюю определяют усреднением мгновенной мощности за период колебаний:

Эффективные действующие значения напряжения и силы тока

.

Что же показывает вольтметр?

Для цепей постоянного тока, тут все однозначно — вольтметр показывает единственное напряжение между двумя контактами.

С цепями переменного тока все опять сложнее. Некоторые (и этих некоторых не так мало, как я убедился) считают, что вольтметр показывает пиковое значение напряжения Um, но это не так!

На самом деле, вольтметры обычно показывают действующее или эффективное, оно же среднеквадратичное, напряжение в сети Uд.

Разумеется, речь идет о вольтметрах переменного напряжения! Поэтому, если будете измерять вольтметром напряжение сети, обязательно убедитесь, что он находится в режиме измерения переменного напряжения.

Оговорюсь, что «пиковые вольтметры», показывающие амплитудные значения напряжения, тоже существуют, но на практике при измерении напряжения питающей сети в быту обычно не применяются.

Разберемся, почему такие сложности. Почему бы не измерять просто амплитуду? Зачем выдумали какое-то «действующее значение» напряжения?

А все дело в потребляемой мощности. Я ведь не просто так писал о ней. Дело в том, что действующее (эффективное) значение переменного напряжения равно величине такого постоянного напряжения, которое за время, равное одному периоду этого переменного напряжения, произведет такую же работу, что и рассматриваемое переменное напряжение.

Или, по-простому, лампочка накаливания будет светить одинаково ярко, воткнем ли мы ее в сеть постоянного напряжения 220В или в цепь переменного тока с действующим значением напряжения 220В.

Для тех, кто уже знаком с интегралами или еще не забыл математику, приведу общую формулу расчета действующего напряжения произвольной формы:

Из этой формулы также становится ясно, почему действующее (эффективное) значение переменного напряжения также называют «среднеквадратичным».

Заметим, что подкоренное выражение и есть та самая «усредненная за период мощность», стоит только поделить это выражение на сопротивление нагрузки R.

Применительно к синусоидальной форме напряжения, страшный интеграл после несложных преобразований превратится в простую формулу:

где Uд — действующее или среднеквадратичное значение напряжение (то самое, которое обычно показывает вольтметр), а Um — амплитудное значение.

Действующее напряжение хорошо тем, что для активной нагрузки, расчет усредненной мощности полностью совпадает с расчетом мощности на постоянном токе:

Это и не удивительно, если вспомнить определение действующего значения напряжения, которое было дано чуть выше.

Ну и, наконец, посчитаем, чему же равна амплитуда напряжения в розетке «на 220В»:

В худшем случае, если у вас сеть на 240В, да еще и с допуском +10%, амплитуда будет аж !

Поэтому, если хотите, чтобы ваши устройства, питающиеся от сети, работали стабильно и не сгорали, выбирайте элементы, которые выдерживают пиковые напряжения не менее 400В. Разумеется, речь идет об элементах, на которые непосредственно подаётся сетевое напряжение.

Отмечу, что для не-синусоидальной формы сигнала действующее значение напряжения рассчитывается по иным формулам. Кому интересно — могут сами взять интегралы или обратиться к справочникам. Нас же интересует питающая сеть, а там всегда должна быть синусоида.

Фазы, фазы, фазы…

Помимо обычной однофазной осветительной сети ~220В все слышали и о трехфазной сети ~380В. Что такое 380В? А это межфазное эффективное напряжение.

Помните, я сказал, что в однофазной сети про фазу синусоиды можно забыть? Так вот, в трехфазной сети этого делать нельзя!

Если говорить по простому, то фаза — это сдвиг во времени одной синусоиды относительно другой. В однофазной сети мы всегда могли принять за начало отсчета любой момент времени — на расчеты это не влияло. В трехфазной сети необходимо учитывать насколько одна синусоида отстоит от другой. В трехфазных сетях переменного тока каждая из фаз отстоит от другой на треть периода или на 120 градусов. Напомню, что период измеряется также в градусах и полный период равен 360 градусов.

Если мы возьмем осциллограф с тремя лучами и прицепимся к трем фазам и одному нулю, то увидим такую картину.

«Синяя» фаза — начинается от нуля отсчета. «Красная» фаза — на треть периода (120 градусов) позже. И, наконец «зеленая» фаза начинается на две трети периода (240 градусов) позже «синей». Все фазы абсолютно симметричны друг относительно друга.

Какую именно фазу брать за точку отсчета — не важно. Картина будет одинаковой.

Математически можно записать уравнения всех трех фаз:

«Синяя» фаза:

«Красная» фаза:

«Зеленая» фаза:

Если измерить напряжение между любой из фаз и нулем в трехфазной сети — то получим обычные 220В (или 230В или 240В — как повезет, см. ГОСТ).

А если измерить напряжение между двумя фазами — то получим 380В (или 400В или 415В — не забываем об этом).

То есть трехфазная сеть — многолика. Ее можно использовать как три однофазные сети с напряжением 220В или как одну трехфазную сеть с напряжением 380В.

Откуда взялось 380В? А вот откуда.

Если мы подставим в формулу расчета действующего напряжения наши данные о двух любых фазах, то получим:

Uдф — действующее межфазное, оно же линейное напряжение.

Учитывая, что амплитуда каждой фазы получим, чтодля межфазного напряжения. На рисунке наглядно показано, как образуется межфазное напряжение, которое обозначено F1-F2 из двух фазных напряжений фаз F1 и F2. Напряжение фаз F1 и F2 измеряется относительно нулевого провода. Линейное напряжение F1-F2 измеряется между двумя разными фазными проводами.

Как видим, что действующее межфазное напряжение больше амплитуды синусоидального напряжения одной фазы.

Амплитуда межфазного напряжения составляет:

Для наихудшего случая (сеть 240В и межфазное напряжение 415В, да еще 10% сверху) амплитуда межфазного напряжения составит:

Учтите это при работе в трехфазных сетях и выбирайте элементы, рассчитанные не менее, чем на 650В, если им предстоит работать между двумя фазами!

Надеюсь, теперь понятно что показывает вольтметр переменного тока?

Итак, очень кратко, почти на пальцах, мы ознакомились с тем какие напряжения действуют в бытовых сетях переменного тока. Подведем краткие итоги всего, изложенного выше.

  • Фазное напряжение — это напряжение между фазой и нулевым проводом.
  • Линейное или межфазное напряжение — это напряжение между двумя разными фазными проводами одной трехфазной сети.
  • В сетях переменного тока РФ действуют три, хоть и близких, но разных стандарта (фазное/линейное): 220В/380В, 230В/400В и 240В/415В переменного тока с частотой 50Гц.
  • Вольтметр переменного тока обычно показывает действующее (оно же среднеквадратичное, оно же эффективное) напряжение, которое в раза меньше, чем пиковое (амплитудное) напряжение в сети.
  • В наихудшем с точки зрения стандартов случае пиковое фазное напряжение составляет примерно 373В, а пиковое линейное напряжение — 645B. Это следует учитывать при разработке электронных схем.
  • электроника для начинающих
  • сети для самых маленьких
  • разработка электроники
  • Разработка для интернета вещей
  • Производство и разработка электроники
  • Энергия и элементы питания
  • Электроника для начинающих

Действующее значение переменного напряжения

Действующее значение переменного напряжения

Бытовые сети переменного электрического тока преимущественно имеют номинальное значение напряжения, равное 220 В. Но обратите внимание на то, значение напряжения в начале периода равно нулю, затем увеличивается до положительного максимума в 310 В, после чего уменьшается до нуля и, прежде чем завершится период, достигает максимального отрицательного значения 310 В. 220 В — это действующее значение переменного напряжения. Оно даёт такой же нагревательный (тепловой) эффект, как и 220 В постоянного тока. Значение 220 В часто называют среднеквадратичным значением переменного напряжения. Максимальное амплитудное значение переменного напряжения равняется действующему значению, умноженному на √2.

Действующее значение переменного напряжения . Формула.
Vд = Vампл / √2

Форма волны переменного тока, получаемого от компании электросетей, называется синусоидальной. Это означает, что форма волны, образуемая в одной половине периода, является зеркальным отображением волны, образуемой во втором полупериоде. Различные другие типы волн переменного напряжения могут формироваться разнообразными электронными схемами, но они не относятся к классической форме переменного напряжения.

Физический смысл действующих значений силы тока и напряжения

Действующие значения показывают силу тока и напряжения, эквивалентную по тепловому эффекту в цепи. Например, действующее напряжение 220 В дает такой же нагрев прибора, как и 220 В постоянного тока.

Осциллограмма напряжения

Расчет действующего значения

Рассмотрим еще несколько примеров расчета действующего значения переменного тока.

Для тока треугольной формы формула расчета имеет вид:

Где Im — амплитудное значение. Например, если Im = 12 А, то:

I = 12 / √3 = 6.93 А

Мощность в цепи с резистором

В цепи переменного тока сила тока и напряжения меняются быстро, поэтому количество выделяемой энергии меняется так же быстро. Но заметить эти изменения невозможно. Чтобы найти среднюю мощность на участке цепи за много периодов, достаточно найти среднюю мощность за один период.

Средняя за период мощность переменного тока — отношение суммарной энергии, поступающей в цепь за период, к этому периоду.

Мощность постоянного тока определяется формулой:

Следовательно, мгновенная мощность в цепи переменного тока на участке с активным сопротивлением R равна:

Подставим в это выражение полученное ранее значение мгновенной силы переменного тока и получим:

p = ( I m a x cos . ω t ) 2 R

Вспомним из курса математики:

cos 2 . α = 1 + cos . 2 α 2 . .

p = I 2 m a x 2 . . R ( 1 + cos . 2 ω t ) = I 2 m a x R 2 . . + I 2 m a x R 2 . . cos . 2 ω t

График зависимости мгновенной мощности от времени:

На протяжении первой четверти периода, когда cos . 2 ω t > 0 , мощность в любой момент времени больше величины I 2 m a x R 2 . . . На протяжении второй четверти периода, когда cos . 2 ω t < 0 , мощность в любой момент времени меньше этой величины. Среднее за период значение cos . 2 ω t = 0 , следовательно, средняя за период мощность равна I 2 m a x R 2 . . .

Средняя мощность − p равна:

− p = I 2 m a x R 2 . . = − i 2 R

Пример №2. Сила переменного тока в цепи меняется по закону i = I m a x cos . ω t . Определить мгновенную мощность в момент времени t = 1 с, если циклическая частота колебаний ω = 100π Гц при сопротивлении R = 10 Ом. Амплитуда силы тока равна 1 А.

p = ( I m a x cos . ω t ) 2 R = 10 ( 1 · cos . ( 100 π · 1 ) 2 = 10 ( Д ж )

Действующие значения силы тока и напряжения

Из предыдущей формулы видно, что среднее значение квадрата силы тока равно половине квадрата амплитуды силы переменного тока:

− i 2 = I 2 m a x 2 . .

Действующее значение силы переменного тока — величина, равная квадратному корню, взятому из среднего значения квадрата тока. Обозначается как I.

I = √ − i 2 = I m a x √ 2

Смысл действующего значения силы переменного тока заключается в том, что оно равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за это же время.

Аналогично определяется действующее значение напряжения U:

U = √ − u 2 = U m a x √ 2 . .

Именно действующие значения силы тока и напряжения определяют мощность P переменного тока:

Пример №3. Найти мощность переменного тока, если амплитуда силы тока равна 2 А, а сопротивление цепи равно 5 Ом.

P = ( I m a x √ 2 . . ) 2 R = I 2 m a x 2 . . R = 2 2 2 . . · 5 = 10 ⎛ ⎝ Д ж ⎞ ⎠

Текст: Алиса Никитина, 7k

Задание EF22720

В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону UC = U0cos ωt, где U0 = 5 В, ω = 1000π с – 1 . Определите период колебаний напряжения на конденсаторе.

Алгоритм решения

Оцените статью
TutShema
Добавить комментарий