Что входит в состав атома

В данной статье рассматриваются основные понятия и структура атома, его ядро, электроны, энергетические уровни, а также атомные модели и изотопы.

Строение атома: основные компоненты и их функции обновлено: 2 сентября, 2023 автором: Научные Статьи.Ру

Помощь в написании работы

Добро пожаловать на лекцию по физике! Сегодня мы будем изучать основы атомной физики. Атомы – это основные строительные блоки материи, и понимание их структуры и свойств является ключевым для понимания многих физических явлений. В этой лекции мы рассмотрим строение атома, его составные части, такие как ядро и электроны, а также энергетические уровни и оболочки. Мы также обсудим различные модели атома и понятие изотопов. Давайте начнем наше погружение в мир атомной физики!

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Что такое атом?

В школьной программе сказано, что атом – это наименьшая частица любого химического элемента. Следовательно, он есть во всём, что окружает в мире. Не важно, идёт речь о неодушевлённом или одушевлённом объекте. Любой предмет на низших химических и физиологических слоях состоит из атомов. Другой вопрос, из чего состоит частица.

Размеры: атома, протона, кварка

Атомы – это элементы, входящие в состав молекулы. При этом они не самые маленькие во вселенной. Есть ещё кварки, о которых не принято рассказывать в школе и даже в высшем учебном заведении. Они меньше атомов, представляют собой химический элемент без внутренней структуры. По строению они значительно легче частей молекулы. Учёным удалось обнаружить 6 разновидностей кварков.

Интересный факт: кварки имеют необычные названия – верхний, нижний, странный, истинный, очарованный и прелестный. Частицы предпочитают образовываться из двух или трёх кварков. В первом случае их именуют мезонами, а во втором – барионами. При этом кварки никогда не появляются по одному.

Строение атома

Во вселенной каждый предмет из чего-то состоит. Допустим, стул сделан из дерева, а оно из молекул. В состав молекул входят атомы. В них есть ядро, внутри которого нейтроны и протоны. Это приходилось слышать всем на уроках физики. Протоны представляют собой частицы с положительным зарядом. Нейтроны не имеют заряда. Вокруг ядра присутствует электрическое облако, внутри которого движутся электроны. Они же считаются отрицательно заряженными элементами. Количество протонов и электронов способно меняться.

Интересно: Как увидели атомы? Описание, фото и видео

Ядро атома

💢 Иванов И. Удивительный Мир внутри Атомного Ядра. Full Video ReMastered.

Считается, что каждая из микрочастиц универсальна. В мире не удастся найти два разных электрона, протона или нейтрона. Они полностью похожи друг на друга. Свойства атома меняются в зависимости от количества частиц в составе.

Допустим, 1 атом водорода состоит из 1 электрона и 1 протона. Это простейший элемент. Атом гелия имеет в составе 2 нейтрона, 2 протона и 2 электрона. Его строение никогда не меняется. Атом лития создан из 4 нейтронов, 3 протонов и 3 электронов. Существуют и другие вещества, и учёные их отличают в зависимости от состава.

Атомы всегда соединяются молекулы, а те – в организмы, минералы. Следовательно, всё в этом мире сделано из мельчайших частиц. Допустим, молекула ДНК является основой всех живых организмов. Она сложная, но сделана из тех же ключевых элементов, что и неодушевлённые предметы. Стоит отметить, что любая плотная материя на 99% состоит из энергетических связей между вышеуказанными частицами. Оставшийся 1% – это физические формы.

Лекция № 2. Строение атома

Атом – это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из положительно заряженного ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. Все электроны атома образуют его электронную оболочку, строение которой определяет многие химические свойства элемента.

Электрон (ē) – это отрицательно заряженная микрочастица, входящая в состав атома и несущая наименьший электрический заряд. Заряд электрона в кулонах оказался величиной чрезвычайно малой (1,610 -19 Кл), поэтому для удобства величина этого «элементарного» заряда принята за единицу qe=-1. Так как атом в целом электронейтрален, то число электронов, движущихся вокруг ядра, равно заряду ядра этого атома. Например, заряд ядра атома натрия +11. Вокруг ядра размещается 11 электронов с общим отрицательным зарядом –11. Самый простой состав имеет ядро атома водорода – один положительный заряд и массу, близкую к единице атомной массы. Ядро водорода назвали протоном. Протон (р + ) – это микрочастица, входящая в состав ядра атома, имеющая положительный заряд qр=+1 и массу, близкую к 1 а.е.м.. В любом атоме число протонов в ядре равно числу электронов. Нейтрон (n 0 ) – это электронейтральная микрочастица, входящая в состав ядра атома, его масса, как и масса протона, близка к 1 а.е.м..

Масса электронов в атоме очень мала – он почти в две тысячи раз легче протона, поэтому массой электрона в атоме пренебрегают и масса атома считается равной сумме масс протонов и нейтронов, т.е. сумме количества протонов и нейтронов в атоме.

Большинство элементов в природе встречаются в виде атомов, характеризующихся разными атомными массами. Такие атомы называются изотопы – атомы, имеющие одинаковый заряд ядра, но разные атомные массы. Это объясняется тем, что они содержат одинаковое число протонов, но разное число нейтронов. Например, изотопы водорода: протий, дейтерий и тритий. Ядро протия состоит из одного протона, дейтерия – из одного протона и одного нейтрона, трития – из одного протона и двух нейтронов.

Атомы различных изотопов одного и того же элемента наряду с разными ядерными свойствами имеют одинаковое строение электронной оболочки, поэтому химические и физические свойства изотопов почти одинаковы.

Строение электронной оболочки

Электроны характеризуются двойственной природой: они имеют свойства и частицы, и волны. Для движущегося электрона невозможно указать его точное местоположение, можно лишь определить вероятность нахождения электрона в различных частях внутриатомного пространства. Область пространства, в которой наиболее вероятно нахождение электрона, называется атомной орбиталью (АО).

Состояние электрона в атоме характеризуется четырьмя квантовыми числами.

Главное квантовое число n определяет энергию электрона в атоме и размер АО, т.е. удаленность электрона от ядра. Главное квантовое число n принимает значения целых чисел 1, 2, 3, 4… Совокупность электронов с одинаковым значением n называется энергетическим уровнем. Наименьшую энергию имеют электроны первого от ядра энергетического уровня (n=1); с увеличением n энергия электрона и его удаленность от ядра возрастают. Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия является минимальной, называется основным, или невозбужденным. Состояния с более высокими значениями энергии называются возбужденными. Энергетические уровни обозначают буквами:

Числовое значение n 1 2 3 4 5 6 7

Буквенное обозначение K L M N O P Q.

На одном и том же энергетическом уровне могут находиться атомные орбитали различной формы, отличающиеся друг от друга по энергии. Поэтому энергетические уровни разделяются на подуровни. Энергию электрона на подуровне и форму атомной орбитали характеризует орбитальное квантовое число l. Значение l зависит от главного квантового числа: l принимает значения от 0 до (n–1), т. е. 0, 1, 2, 3… (n–1). В пределах данного энергетического уровня совокупность электронов, характеризующихся одинаковым значением l, называется энергетическим подуровнем. Подуровни обозначают буквами:

Орбитальное квантовое число l 0 1 2 3

Обозначение энергетического подуровня s p d f.

Таким образом, при l = 0, 1, 2, 3 электроны находятся соответственно на s-, p-, d-, f-подуровнях. При данном значении главного квантового числа n наименьшую энергию имеют электроны s-подуровня, затем p-, d-, f-подуровней. Электроны различных подуровней называют s-, p-, d-, f-электронами. В этом случае говорят также о состояниях s-, p-, d-, f-электронов, или s-, p-, d-, f-атомных орбиталях.

Число энергетических подуровней в уровне не должно быть больше главного квантового число n. Так, первый уровень (n=1) имеет один подуровень (s), второй уровень (n=2) – два подуровня (s и p), третий (n=3) – три (s, p, d), четвертый (n=4) – четыре (s, p, d, f). В оболочках атомов ныне известных элементов электроны застраивают на каждом уровне не более четырех подуровней. Уровни O (n=5), P (n=6), Q (n=7) содержат по четыре подуровня.

Каждый подуровень составлен из орбиталей, количество которых определяется магнитными квантовым числом ml. Магнитное квантовое число ml определяет возможные ориентации орбитали в пространстве, связано с орбитальным квантовым числом и может принимать целочисленные значения от –l до +l, включая ноль. Определенному значению l соответствует (2l+1) возможных значений магнитного квантового числа. Число значений ml указывает на число атомных орбиталей в подуровне и число возможных направлений, по которым они могут ориентироваться в пространстве.

Для s-подуровня l=0 и потому ml имеет единственное значение: ml =0. Таким образом, на s-подуровне имеется единственная s-орбиталь, которая расположена симметрично ядру атома. Для p-подуровня l=1 и ml приобретает три значения: –1, 0, 1, т. е. р-подуровень имеет три р-орбитали и они ориентированы по трем осям координат; d-подуровень (l=2) имеет пять значений ml: –2, –1, 0, 1, 2 и, следовательно, пять d-орбиталей, которые ориентированы по пяти разным направлениям; f-подуровень (l=3) имеет семь значений ml: –3, –2, –1, 0, 1, 2, 3, т. е. семь f-орбиталей. Число ориентаций f-орбиталей равно семи.

Условно атомные орбитали АО обозначают в виде квадрата (квантовой ячейки) Error: Reference source not found. Соответственно для s-подуровня имеется одна АО Error: Reference source not found, для p‑подуровня – три АО , для d-подуровня – пять АО Error: Reference source not found, для f‑подуровня – семь АО .Error: Reference source not found

Таким образом, электроны в атоме располагаются по энергетическим уровням, удаленность которых от ядра характеризуется значением главного квантового числа n; уровни состоят из подуровней, число которых для каждого уровня не превышает значение n; в свою очередь, подуровень состоит из орбиталей, форма которых определяется значением орбитального квантового числа l, а количество задается числом значений магнитного квантового числа ml. Квантовые числа n, l, ml характеризуют орбиталь.

Кроме движения вокруг ядра, электрон вращается вокруг собственной оси. Это движение получило название «спин». Спиновое квантовое число ms характеризует два возможных направления вращения электрона вокруг собственной оси (по часовой стрелке или против). Спиновое квантовое число ms принимает два значения: + 1 /2 и – 1 /2. Электроны с разными спинами обычно обозначаются противоположно направленными стрелками ↓↑.

Четыре квантовых числа n, l, ml, ms полностью характеризуют состояние электрона в атоме.

Проскок электрона

Это явление характерно для элементов IB и VIB групп, например, Cr, Cu, Ag.

Например, у меди электронная оболочка должна выглядеть как ..3d 9 4s 2 . Но так как для заполнения d-подуровня не хватает одного электрона, то более выгодной становится ситуация, когда с s-подуровня электрон “перепрыгивает” на внутренний d-подуровень. В результате, конфигурация меди выглядит как 3d 10 4s 11

Итог: иметь конфигурации nd 5 и nd 10 более энергетически выгодно, чем nd 4 и nd 9 . Поэтому у таких элементов, как Cu, Cr, Ag, Au, Nb, Mo, Ru, Pt, Pd происходит проскок (провал) электрона: электрон с верхнего “этажа” как будто проваливается на нижний.

Классификация химических элементов: s-,p-,d-,f-элементы

В зависимости от положения “последнего электрона” бывают s-, p-, d-, f-элементы:

  • s-элементы: IA и IIA группы;
  • p-элементы: IIIA-VIIIA группы;
  • d-элементы: элементы побочных подгрупп;
  • f-элементы: вынесены в отдельную группу лантаноидов и актиноидов.

У s- и p-элементов валентные электроны находятся на внешнем уровне.

У d-элементов — на внешнем s- и на предвнешнем d-подуровнях.

Далее приведены электронные формулы атомов элементов первых четырех периодов. Благодаря этой шпаргалке всегда можно сверить свой вариант электронной конфигурации и проверить себя.

Продолжение темы читайте в статье «Строение атома и электронные конфигурации 2.0».

Фактчек

  • Атом — электронейтральная частица, состоящая из ядра и вращающихся вокруг него электронов.
  • Электроны располагаются на электронных подуровнях, причем их число определяется порядковым номером элемента.
  • Существует группа атомов одного и того же химического элемента, у которых имеется разное число нейтронов. Такие элементы называют изотопами.
  • Электроны располагаются по ячейкам так, чтобы энергия системы была минимальна.
  • Иногда для достижения минимума энергии некоторые правила нарушаются — таковым является проскок электрона.

Задание 1.

Ядро атома состоит из:

  1. Протонов и нейтронов
  2. Протонов и электронов
  3. Нейтронов и электронов
  4. Протонов, нейтронов и электронов

Задание 2.

У изотопов различается число:

  1. Протонов
  2. Нейтронов
  3. Электронов
  4. Нейтронов и электронов

Задание 3.

Проскок электрона характерен для элемента:

Задание 4.

На третьем электронном слое может находиться максимально:

  1. 8 электронов
  2. 18 электронов
  3. 2 электрона
  4. 32 электрона

Ответы: 1. — 1; 2. — 2; 3. — 4; 4. — 2.

Что обнаружили физики?

В 1897 г. английский физик Джозеф Джон Томсон в результате экспериментов по изучению электрического разряда в газах, фотоэффекта и термоэлектронной эмиссии обнаружил, что при соударениях атомов в плазме электрического разряда, при нагревании вещества или освещении его ультрафиолетовым (коротковолновым) светом из атомов любого химического элемента вылетают одинаковые отрицательно заряженные частицы. Эти частицы назвали электронами. Электрический заряд e отдельного электрона впервые измерил американский физик Роберт Милликен в 1909 г. Он оказался действительно одинаковым у всех электронов и равным 1,6*10 -19 К.

Обнаружение электронов в составе атомов любого химического элемента было первым доказательством сложной структуры атомов. На основе полученных результатов Томсон первым, в 1897 г., предложил схему строения атома.

Модель атома Томсона - пудинг

Модель атома, предложенную Томсоном, иногда, для наглядности, называют “пудингом” — английским мучным десертом, в массе которого равномерно распределены изюм или другие ягоды. Томсон полагал, что атом имеет форму шара, состоящего из равномерно распределенного положительного заряда. Внутри этого положительно заряженного объема находятся вкрапления (“изюминки”) электронов. В целом получается, что атом электрически нейтрален. Томсон также предположил, что когда электроны колеблются относительно центра шара, то атом излучает свет.

Однако эта модель не смогла дать объяснения последовавшим далее экспериментам и открытиям.

Некоторые атомы распадаются сами

В 1896 г. французский ученый Анри Беккерель исследовал соли урана. Он обнаружил, что атомы урана испускают не видимые глазом излучения, проникающие через бумагу, и вызывающие почернение фотографической пластинки.

Явление испускания атомами невидимых проникающих излучений назвали радиоактивностью.

Радиоактивный распад. Открытие Беккереля

Дальнейшие исследования этого явления показали, что радиоактивные атомы испускают не один тип излучения, а три вида излучений различной физической природы. Эти излучения назвали альфа-, бета- и гамма-лучами. Альфа-лучи α оказались потоком положительно заряженных ионов гелия 4 He2, бета-лучи β — потоком электронов, гамма-лучи γ — потоком квантов электромагнитного излучения с очень малой длиной волны, порядка 10 -11 – 10 -13 м.

Англичане Эрнест Резерфорд и Фредерик Содди доказали, что в результате радиоактивного распада происходит превращение атомов одного химического элемента в атомы другого химического элемента. Например атом урана 235 U92 в результате распада превращается в два атома — атом тория 232 Th90 и атом гелия 4 He2.

Открытие радиоактивного распада окончательно опровергло представление о неизменности, неделимости атомов, что долгое время считалось общей характеристикой для всех атомов.

В 1932 г. английский физик Джеймс Чедвик экспериментально доказал, ядро атома состоит не только из протонов, но и из нейтронов — частиц, не имеющих электрического заряда. Протон и нейтрон притягиваются друг к другу с помощью сильного ядерного взаимодействия. Число нейтронов в ядре равно числу протонов.

Атом

Атом — это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z — порядковый номер данного элемента в периодической системе химических элементов, е — величина элементарного электрического заряда.

Электрон — это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К — оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц — протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны — это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента — водорода. Число протонов в ядре равно Z. Нейтрон — это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А — Z, где А — массовое число данного изотопа (см. Периодическая система химических элементов). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны — гамма-излучение. Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

строение атома

Атом (греч. atomos — неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е — элементарный электрический заряд, равный по величине заряду электрона (4,8·10 —10 эл.-ст. ед.), и Z — атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А—Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 —8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы — электроны, протоны, атомы и т. д.,— кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е0, в какое-либо из возбужденных состояний Ei происходит при поглощении определенной порции энергии Еi — Е0. Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= Ei— Еk где h — постоянная Планка (6,62·10 —27 эрг·сек), v — частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

  • Анатомический атлас
  • Физиология человека
  • Детские болезни
  • Йога
  • Правильное питание
  • Как похудеть
  • ЛФК (лечебная физкультура)
  • Лучшие курорты мира
  • Лечение народными средствами
  • Лекарственные растения
  • Проктология
  • Психиатрия
  • Алкоголизм
  • Курение
  • Спортивная медицина
  • Судебная медицина

Лекция № 2. Строение атома

Атом – это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из положительно заряженного ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. Все электроны атома образуют его электронную оболочку, строение которой определяет многие химические свойства элемента.

Электрон (ē) – это отрицательно заряженная микрочастица, входящая в состав атома и несущая наименьший электрический заряд. Заряд электрона в кулонах оказался величиной чрезвычайно малой (1,610 -19 Кл), поэтому для удобства величина этого «элементарного» заряда принята за единицу qe=-1. Так как атом в целом электронейтрален, то число электронов, движущихся вокруг ядра, равно заряду ядра этого атома. Например, заряд ядра атома натрия +11. Вокруг ядра размещается 11 электронов с общим отрицательным зарядом –11. Самый простой состав имеет ядро атома водорода – один положительный заряд и массу, близкую к единице атомной массы. Ядро водорода назвали протоном. Протон (р + ) – это микрочастица, входящая в состав ядра атома, имеющая положительный заряд qр=+1 и массу, близкую к 1 а.е.м.. В любом атоме число протонов в ядре равно числу электронов. Нейтрон (n 0 ) – это электронейтральная микрочастица, входящая в состав ядра атома, его масса, как и масса протона, близка к 1 а.е.м..

Масса электронов в атоме очень мала – он почти в две тысячи раз легче протона, поэтому массой электрона в атоме пренебрегают и масса атома считается равной сумме масс протонов и нейтронов, т.е. сумме количества протонов и нейтронов в атоме.

Большинство элементов в природе встречаются в виде атомов, характеризующихся разными атомными массами. Такие атомы называются изотопы – атомы, имеющие одинаковый заряд ядра, но разные атомные массы. Это объясняется тем, что они содержат одинаковое число протонов, но разное число нейтронов. Например, изотопы водорода: протий, дейтерий и тритий. Ядро протия состоит из одного протона, дейтерия – из одного протона и одного нейтрона, трития – из одного протона и двух нейтронов.

Атомы различных изотопов одного и того же элемента наряду с разными ядерными свойствами имеют одинаковое строение электронной оболочки, поэтому химические и физические свойства изотопов почти одинаковы.

Строение электронной оболочки

Электроны характеризуются двойственной природой: они имеют свойства и частицы, и волны. Для движущегося электрона невозможно указать его точное местоположение, можно лишь определить вероятность нахождения электрона в различных частях внутриатомного пространства. Область пространства, в которой наиболее вероятно нахождение электрона, называется атомной орбиталью (АО).

Состояние электрона в атоме характеризуется четырьмя квантовыми числами.

Главное квантовое число n определяет энергию электрона в атоме и размер АО, т.е. удаленность электрона от ядра. Главное квантовое число n принимает значения целых чисел 1, 2, 3, 4… Совокупность электронов с одинаковым значением n называется энергетическим уровнем. Наименьшую энергию имеют электроны первого от ядра энергетического уровня (n=1); с увеличением n энергия электрона и его удаленность от ядра возрастают. Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия является минимальной, называется основным, или невозбужденным. Состояния с более высокими значениями энергии называются возбужденными. Энергетические уровни обозначают буквами:

Числовое значение n 1 2 3 4 5 6 7

Буквенное обозначение K L M N O P Q.

На одном и том же энергетическом уровне могут находиться атомные орбитали различной формы, отличающиеся друг от друга по энергии. Поэтому энергетические уровни разделяются на подуровни. Энергию электрона на подуровне и форму атомной орбитали характеризует орбитальное квантовое число l. Значение l зависит от главного квантового числа: l принимает значения от 0 до (n–1), т. е. 0, 1, 2, 3… (n–1). В пределах данного энергетического уровня совокупность электронов, характеризующихся одинаковым значением l, называется энергетическим подуровнем. Подуровни обозначают буквами:

Орбитальное квантовое число l 0 1 2 3

Обозначение энергетического подуровня s p d f.

Таким образом, при l = 0, 1, 2, 3 электроны находятся соответственно на s-, p-, d-, f-подуровнях. При данном значении главного квантового числа n наименьшую энергию имеют электроны s-подуровня, затем p-, d-, f-подуровней. Электроны различных подуровней называют s-, p-, d-, f-электронами. В этом случае говорят также о состояниях s-, p-, d-, f-электронов, или s-, p-, d-, f-атомных орбиталях.

Число энергетических подуровней в уровне не должно быть больше главного квантового число n. Так, первый уровень (n=1) имеет один подуровень (s), второй уровень (n=2) – два подуровня (s и p), третий (n=3) – три (s, p, d), четвертый (n=4) – четыре (s, p, d, f). В оболочках атомов ныне известных элементов электроны застраивают на каждом уровне не более четырех подуровней. Уровни O (n=5), P (n=6), Q (n=7) содержат по четыре подуровня.

Каждый подуровень составлен из орбиталей, количество которых определяется магнитными квантовым числом ml. Магнитное квантовое число ml определяет возможные ориентации орбитали в пространстве, связано с орбитальным квантовым числом и может принимать целочисленные значения от –l до +l, включая ноль. Определенному значению l соответствует (2l+1) возможных значений магнитного квантового числа. Число значений ml указывает на число атомных орбиталей в подуровне и число возможных направлений, по которым они могут ориентироваться в пространстве.

Для s-подуровня l=0 и потому ml имеет единственное значение: ml =0. Таким образом, на s-подуровне имеется единственная s-орбиталь, которая расположена симметрично ядру атома. Для p-подуровня l=1 и ml приобретает три значения: –1, 0, 1, т. е. р-подуровень имеет три р-орбитали и они ориентированы по трем осям координат; d-подуровень (l=2) имеет пять значений ml: –2, –1, 0, 1, 2 и, следовательно, пять d-орбиталей, которые ориентированы по пяти разным направлениям; f-подуровень (l=3) имеет семь значений ml: –3, –2, –1, 0, 1, 2, 3, т. е. семь f-орбиталей. Число ориентаций f-орбиталей равно семи.

Условно атомные орбитали АО обозначают в виде квадрата (квантовой ячейки) Error: Reference source not found. Соответственно для s-подуровня имеется одна АО Error: Reference source not found, для p‑подуровня – три АО , для d-подуровня – пять АО Error: Reference source not found, для f‑подуровня – семь АО .Error: Reference source not found

Таким образом, электроны в атоме располагаются по энергетическим уровням, удаленность которых от ядра характеризуется значением главного квантового числа n; уровни состоят из подуровней, число которых для каждого уровня не превышает значение n; в свою очередь, подуровень состоит из орбиталей, форма которых определяется значением орбитального квантового числа l, а количество задается числом значений магнитного квантового числа ml. Квантовые числа n, l, ml характеризуют орбиталь.

Кроме движения вокруг ядра, электрон вращается вокруг собственной оси. Это движение получило название «спин». Спиновое квантовое число ms характеризует два возможных направления вращения электрона вокруг собственной оси (по часовой стрелке или против). Спиновое квантовое число ms принимает два значения: + 1 /2 и – 1 /2. Электроны с разными спинами обычно обозначаются противоположно направленными стрелками ↓↑.

Четыре квантовых числа n, l, ml, ms полностью характеризуют состояние электрона в атоме.

Оцените статью
TutShema
Добавить комментарий