Что такое звуковые волны

В вестернах часто встречается персонаж-индеец, который, приложив ухо к земле, может определить, как далеко находятся его противники. Он слышит вибрацию земли, вызванную копытами лошадей. Подобным образом мы производим и воспринимаем звуки, совершая и принимая колебания молекул воздуха.

Когда вы слышите термин «звук» или «звуковая волна», вы, конечно, понимаете, о чем идет речь. В этой статье вы узнаете, что такое звук на самом деле и как вы воспринимаете окружающий мир своими ушами.

Звук — это волна. Эти звуковые волны достигают вашего уха и позволяют вам воспринимать звуки и шумы через систему «ухо-мозг». Как правило, существует два различия: полезный звук и звук помех. Полезный звук включает музыку или голоса во время разговора. Звук помех включает в себя, например, шум строительной площадки или шум транспорта.

В физике звук — это вибрация. Эта вибрация распространяется как механическая волна (также акустическая волна) в среде. Такой средой является, например, воздух. Но вы, вероятно, также слышали звуки под водой или сквозь стены. Звуковые волны в воздухе возникают из-за колебаний давления и плотности.

Человек издает звуковые волны

Что такое звук (звуковая волна)?

Какое-то событие, например, произнесение слов, заставляет воздух вибрировать. Затем это возбуждение распространяется в виде волнового движения. Помимо воздуха, возбуждаться могут и другие упругие среды, например, вода.

Итак, звук — это колебательное двuжение частиц упругой среды, которое распространяется от источника звука в виде волн в различных средах.

Можно дать и другое определение:

Звук — это механическая волна, распространяющаяся в пространстве из-за изменения давления и плотности воздуха.

Необходимым условием распространения звуковых волн является наличие упругой среды. Если вокруг источника звука нет упругой среды, то звук распространяться не будет. Например, в вакууме механические волны не могут распространяться.

Возникновение звуковых волн

Большинство веществ и сред в Природе являются в той или иной мере упругими. Упругость среды выражается в том, что она «сопротивляется» внешнему возмущающему воздействию, и стремится вернуться в свое исходное состояние. Поскольку таким свойством обладает любая точка среды, то возникают хорошие условия для распространения возмущений.

Для иллюстрации схемы возникновения звуковой волны, представим себе кристалл упругого вещества, по которому нанесен внешний удар. В результате удара возникнет некоторая деформация кристаллической решетки.

Распространение звука. Звуковые волны | Физика 9 класс #32 | Инфоурок

Возникают силы, которые, во-первых, деформируют более далекие области кристалла, а во-вторых, стремятся вернуть деформированные области к исходному состоянию.

Исходная область возвращается в состояние равновесия, однако, при этом приобретает некоторую скорость и кинетическую энергию. В результате атомы кристалла проходят некоторое расстояние дальше точки равновесия, пока снова не возникнут силы, направленные обратно.

Таким образом, атомы области, в которую был нанесен удар, начинают колебаться. Более далекие области кристалла испытывают воздействие, и также приходят в колебательное движение с некоторой задержкой, и, в свою очередь, передают колебания дальше. В среде возникает упругая волна сжатий и растяжений, распространяющаяся с некоторой скоростью, которая имеет все характеристики, присущие волновым процессам, и описывается теми же формулами.

Такая волна называется звуковой волной или просто звуком.

Звуковые волны в воздухе и в других средах

Чаще всего, когда речь идет о звуке, имеются ввиду звуковые волны в воздухе. Примерами звуковых волн могут являться звуки грома, шум листьев, наш голос – любой звук, который мы можем слышать – является звуковой волной.

Однако, звук может распространяться не только по воздуху, но и по любой среде, в которой есть силы упругости. И скорость его распространения зависит от величины этих сил.

Для газов силы упругости возникают из-за локальных колебаний давления. Для кристаллов силами упругости являются межмолекулярные взаимодействия. Поскольку силы, возникающие во втором случае, гораздо больше, то и передача колебаний в кристалле происходит с гораздо большей скоростью, чем в воздухе. В жидкостях силы упругости имеют обе описанных составляющих, поэтому скорость звука в них больше, чем в газах, но меньше, чем в кристаллах.

Интересное явление происходит на границе разделения двух сред с различными упругостями. Из-за разности упругих свойств на границе передача колебаний происходит не полностью. Часть колебаний передается дальше, а часть – возвращается в среду, и начинает движение в обратном направлении. В среде возникает волна, имеющие характеристики, близкие к исходной, но имеющая более низкую мощность, и движущаяся в обратном направлении – эхо.

Звуковые волны. Звук.

Звук (или звуковые волны) — это распространяющиеся в виде волн колебательные движения частиц упругой среды: газообразной, жидкой или твердой.

Звук (или звуковые волны) — это распространяющиеся в виде волн колебательные движения частиц упругой среды: газообразной, жидкой или твердой.

Под словом «звук» понимают также ощущения, вызыва­емые действием звуковых волн на специальный орган чувств (орган слуха или, проще говоря, ухо) человека и животных: человек слышит звук частотой от 16 Гц до 20 кГц. Частоты этого диапазона называют звуковыми.

Итак, физическое понятие звука подразумевает упругие волны не только тех частот, которые человек слышит, но так­же более низкие и более высокие частоты. Первые называют­ся инфразвуком, вторые — ультразвуком. Самые высокочастотные упругие волны в диапазоне 10 9 -10 13 Гц отно­сятся к гиперзвуку.

Звук звуковые волны

«Услышать» звуковые волны можно, заставив дрожать за­жатую в тисках длинную стальную линейку. Однако если над тисками будет выступать большая часть линейки (рис. а), то, вызвав ее колебания, мы не услышим порождаемые ею волны. Но если укоротить выступающую часть линейки и тем самым увеличить частоту ее колебаний, то линейка начнет звучать.

Скорость звука

Скорость звука зависит от среды, через которую проходят волны, и является фундаментальным свойством материала. Первые значительные усилия в направлении измерения скорости звука были сделаны Ньютоном. Он считал, что скорость звука в отношении конкретного вещества была равна корню квадратному из давления, действующего на него, деленое на плотность.

Позже это было опровергнуто, когда установили, что так неправильно записывать скорость.

Где $gamma $ адиабатическая сжимаемость среды.

Начинай год правильно
Выигрывай призы на сумму 400 000 ₽

Поскольку $Kgamma $ окончательно получим уравнение:

которое также известно как уравнение Ньютона-Лапласа.

Таким образом, скорость звука возрастает с увеличением жесткости материала, и уменьшается с его плотностью.

В диспергирующей среде, скорость звука является функцией частоты звука, определяемая через дисперсионное соотношение. Каждый частотный компонент распространяется со своей скоростью, называемой фазовой скоростью, в то время как энергия возмущения распространяется с помощью групповой скорости.

В атмосфере Земли, главным фактором, влияющим, на скорость звука является температура. Для данного идеального газа с постоянной теплоемкостью и составом, скорость звука зависит только от температуры.

Скорость звука в воде по отношению к температуре

Рисунок 2. Скорость звука в воде по отношению к температуре

Найти скорость $v$ распространения продольных упругих колебаний в следующих металлах:

Скорость продольных колебаний в твердых телах:

Возникновение звуковых волн

Большинство веществ и сред в Природе являются в той или иной мере упругими. Упругость среды выражается в том, что она «сопротивляется» внешнему возмущающему воздействию, и стремится вернуться в свое исходное состояние. Поскольку таким свойством обладает любая точка среды, то возникают хорошие условия для распространения возмущений.

Для иллюстрации схемы возникновения звуковой волны, представим себе кристалл упругого вещества, по которому нанесен внешний удар. В результате удара возникнет некоторая деформация кристаллической решетки.

Возникают силы, которые, во-первых, деформируют более далекие области кристалла, а во-вторых, стремятся вернуть деформированные области к исходному состоянию.

Исходная область возвращается в состояние равновесия, однако, при этом приобретает некоторую скорость и кинетическую энергию. В результате атомы кристалла проходят некоторое расстояние дальше точки равновесия, пока снова не возникнут силы, направленные обратно.

Таким образом, атомы области, в которую был нанесен удар, начинают колебаться. Более далекие области кристалла испытывают воздействие, и также приходят в колебательное движение с некоторой задержкой, и, в свою очередь, передают колебания дальше. В среде возникает упругая волна сжатий и растяжений, распространяющаяся с некоторой скоростью, которая имеет все характеристики, присущие волновым процессам, и описывается теми же формулами.

Такая волна называется звуковой волной или просто звуком.

Звуковые волны в воздухе и в других средах

Чаще всего, когда речь идет о звуке, имеются ввиду звуковые волны в воздухе. Примерами звуковых волн могут являться звуки грома, шум листьев, наш голос – любой звук, который мы можем слышать – является звуковой волной.

Однако, звук может распространяться не только по воздуху, но и по любой среде, в которой есть силы упругости. И скорость его распространения зависит от величины этих сил.

Для газов силы упругости возникают из-за локальных колебаний давления. Для кристаллов силами упругости являются межмолекулярные взаимодействия. Поскольку силы, возникающие во втором случае, гораздо больше, то и передача колебаний в кристалле происходит с гораздо большей скоростью, чем в воздухе. В жидкостях силы упругости имеют обе описанных составляющих, поэтому скорость звука в них больше, чем в газах, но меньше, чем в кристаллах.

Интересное явление происходит на границе разделения двух сред с различными упругостями. Из-за разности упругих свойств на границе передача колебаний происходит не полностью. Часть колебаний передается дальше, а часть – возвращается в среду, и начинает движение в обратном направлении. В среде возникает волна, имеющие характеристики, близкие к исходной, но имеющая более низкую мощность, и движущаяся в обратном направлении – эхо.

Что такое звуковая волна?

«Яркое детство» – совместный проект редакции сайта 7Дней.ru и анимационной компании «Ярко». Герои мультсериалов компании «Ярко» – разноплановые персонажи – выступают здесь в роли экспертов или задают неожиданные вопросы. Этот материал нам помогла готовить героиня мультсериала «Улетная доставка».

Звуковые волны - что это, простыми словами объяснить ребенку

Фото: 123RF/legion-media.ru

Представление о волнообразном движении звука берет свое начало в первом веке до нашей эры. А зарождение современной науки о звуке приписывается Галилео Галилею. Итак, Рок, что же такое звуковая волна?

Рок

Персонаж мультсериала «Улетная доставка»

Как же объяснить? Надо раскинуть лавой… Звук создается, когда что-то вибрирует и посылает волны энергии (вибрации) в наши уши. Колебания распространяются по воздуху к уху. Когда энергия идет от источника звука, проходя через воздух, любую жидкость или твердое вещество, звуковая волна возмущает частицы в окружающей среде, а эти частицы возмущают другие, находящиеся рядом с ними, и так далее. Волна переносит звуковую энергию обычно во всех направлениях и с меньшей интенсивностью по мере удаления от источника.

Как мы слышим звук?

Когда звуковые волны достигают наружного уха, ушная раковина собирает их и направляет через слуховой проход, усиливая звук. Входящие звуковые волны проходят к мембране овальной формы в конце слухового прохода, известной как барабанная перепонка. Когда звуковые волны достигают ее, они вызывают вибрации, которые передаются трем крошечным костям, называемым молоточком, наковальней и стремечком.

Рок

Персонаж мультсериала «Улетная доставка»

Звуковые волны могут отражаться от поверхностей. Мы слышим звуковые отражения как эхо. Твердые гладкие поверхности действительно хорошо отражают звуки, поэтому в пустых комнатах много эха. Воздушненько!

Звуковые волны - что это, простыми словами объяснить ребенку

Фото: 123RF/legion-media.ru

Еще звук изменяется в зависимости от того, насколько быстро или медленно объект вибрирует, создавая звуковые волны. Если объект вибрирует быстро, мы слышим высокий звук, а если объект вибрирует медленно, мы слышим низкий звук. Чем сильнее вибрации, тем громче звук. Звук будет слабее, чем дальше вы находитесь от его источника. Звуки, которые мы обычно слышим, представляют собой смесь множества различных видов звуковых волн.

Рок

Персонаж мультсериала «Улетная доставка»

Звуковые волны могут проходить через твердые тела, например, металл, через жидкости и через газы (к примеру, воздух). Но они не могут путешествовать по пустому пространству, в котором нет ничего, даже воздуха. Поэтому в открытом космосе вообще нет звуков!

Оцените статью
TutShema
Добавить комментарий