Что такое ксв для антенны

Чтобы передатчик передавал максимально возможную мощность антенны, важно согласовать выходное сопротивление передатчика, волновое сопротивление линии передачи и импеданс антенны. КСВ это числовой параметр, позволяющий оценить качество такого согласования.

КСВ соответствует английская аббревиатура SWR, или VSWR (Voltage Standing Wave Ratio). КСВ является функцией коэффициента отражения. Если обозначить коэффициент отражения буквой Γ (гамма), то КСВ можно определить по формуле:

Коэффициент отражения также известен как параметр s11 [2], или потери на отражение. Ниже в таблице показана взаимосвязь между отраженной мощностью, s11 и КСВ. Если вы не хотите погружаться в понимание формул взаимосвязи между КСВ, потерями на рассогласование, s11/Γ, и просто хотели бы получить для этого удобный калькулятор, то перейдите по ссылке [3].

Для антенн КСВ всегда представлен положительным реальным числом со значением больше 1.0. Чем КСВ ближе к единице, тем лучше антенна согласована с кабелем и выходом передатчика, и тем больше полезной мощности излучается в эфир. Идеальное значение КСВ = 1.0, в этом случае нет никакого отражения мощности от антенны.

Часто антенны должны удовлетворять требованиям по частотной полосе пропускания в контексте КСВ. Например, антенна может быть рассчитана на работу в диапазоне 100 .. 200 МГц с КСВ < 3. Этот КСВ означает, что коэффициент отражения от антенны в таком обозначенном диапазоне частот будет меньше 0.5.

[Физический смысл КСВ]

КСВ определяется по напряжению, измеренному вдоль линии передачи, идущей к антенне. Из-за сложения прямой и отраженной волны в линии передачи на ней получаются участки стоячей волны с максимальной и минимальной амплитудой. КСВ это отношение пикового значения максимальной амплитуды стоячей волны к значению минимальной амплитуды стоячей волны, как показано на следующем рисунке:

VSWR amplitudes fig01

Рис. 1. Напряжения, измеренные вдоль линии передачи.

Когда антенна не согласована с передатчиком, мощность от неё отражается (что показывает коэффициент отражения, который не равен 0). Отраженная волна создает в линии передачи «стоячие волны». В результате на линии передачи образуются пики и провалы напряжения, как показано на рис. 1. Если КСВ = 1.0, то отражения мощности нет, и напряжение сигнала постоянное на всей длине линии передачи.

[КСВ, отраженная мощность, и s11]

КСВ 3 это хороший коэффициент? Насколько плох КСВ 12? На этот счет жестких правил не существует. В этом разделе сделана попытка перевести значение КСВ в реальный контекст: таблица ниже показывает взаимосвязь между КСВ, общей отраженной мощностью, и коэффициентом отражения Γ (который также известен как параметр s11). Обратите внимание, что отраженная мощность это просто коэффициент отражения в квадрате.

Настройка антенн по КСВ. Разница между КСВН и КСВТ. Влияние длины кабеля

Таблица 1. КСВ, отраженная от антенны мощность и Γ (s11).

КСВΓ (s11)Отр. мощность (%)Отр. мощность (dB)
1.00.0000.00-∞
1.50.2004.0-14.0
2.00.33311.1-9.55
2.50.42918.4-7.36
3.00.50025.0-6.00
3.50.55630.9-5.10
4.00.60036.0-4.44
5.00.66744.0-3.52
6.00.71451.0-2.92
7.00.75056.3-2.50
8.00.77860.5-2.18
9.00.80064.0-1.94
10.00.81866.9-1.74
15.00.87576.6-1.16
20.00.90581.9-0.87
50.00.96192.3-0.35

По этой таблице видно, что КСВ = 4 соответствует 36% отраженной мощности от мощности, переданной в антенну (64% мощности является полезной, которая успешно излучена в эфир или рассеивается на активном сопротивлении антенны). Отраженная мощность 0 dB означает, что вся мощность отражается обратно (100%), в то время как -10 dB означает, что отражается 10% мощности. Если вся мощность отражается, то КСВ равен бесконечности.

Обратите внимание, что КСВ очень нелинейно зависит от коэффициента отражения. Т. е. существует очень малое различие в отраженной мощности, когда КСВ меняется от 9 до 10. Однако отраженная мощность меняется на 11%, когда КСВ меняется от 1 к 2.

[КСВ-параметры антенн]

В индустрии антенны часто классифицируются (по критерию плохая/хорошая) на основе параметра их КСВ. Это способ пассивного измерения параметров антенны, чтобы быстро определить, насколько хорошо она настроена на целевой диапазон частот. Антенна проверяется векторным анализатором цепей (VNA, см. [5]), и КСВ регистрируется как функция, зависящая от частоты. В качестве примера рассмотрим ситуацию, когда для 5 разных антенн измерены и построены графики КСВ, см. рис. 2. На нем прямыми голубыми линиями обозначены желаемые предельные параметры КСВ для антенны, которые нельзя превышать:

VSWR 5antennas vs Frequence fig02

Рис. 2. Зависимость КСВ антенны от частоты.

Имейте в виду, что метрика КСВ не показывает, сколько мощности передается в антенну. Т. е. КСВ не означает, что антенна излучает определенную часть подведенной мощностиThis does not mean that the antenna radiates all the power it receives. Вместо этого КСВ показывает потенциал антенны в контексте излучения. Низкое значение КСВ означает, что антенна хорошо согласована, однако это не обязательно означает, что переданная мощность также попала в эфир. Для определения реальной мощности излучения требуется безэховая камера или другое специальное измерительное оборудование. Одного лишь КСВ недостаточно для определения, что антенна функционирует должным образом.

КСВ также может быть измерен с помощью диаграммы Смита [6]. КСВ это только скалярная метрика, в то время как диаграмма Смита показывает реактивную (емкостную или индуктивную) составляющую полного сопротивления антенны.

[Ссылки]

1. VSWR Voltage Standing Wave Ratio site:antenna-theory.com.
2. S-параметры: что это?
3. VSWR Calculator site:antenna-theory.com.
4. EVM Error Vector Magnitude site:antenna-theory.com.
5. NanoVNA-F V2, векторный анализатор радиоцепей.
6. The Smith Chart site:antenna-theory.com.

Что такое КСВ и чем его закусывать?

Так или иначе, любой индивид, интересующийся техникой радиосвязи, рано или поздно, сталкивается с лаконичным термином «КСВ». При этом, если даже ёжику понятно, что значение КСВ должно быть как можно меньше, то какова физическая сущность этого параметра, а также степень его влияния на уровень потерь энергии в линии ясно далеко не всегда и не каждому.

Начнём с торжественного, но малопонятного определения из википедии:
«Коэффициент стоячей волны (КСВ, от англ. standing wave ratio, SWR) – это отношение наибольшего значения амплитуды напряжённости электрического или магнитного поля стоячей волны в линии передачи к наименьшему».

Для мало-мальского понимания вышесказанного, давайте представим линию передачи, состоящую из источника сигнала (генератора, передатчика и т.д.), фидера (кабеля, соединяющего источник с антенной) и, собственно говоря, самой антенны.
Фанатично вдаваться в глубину процесса – дело долгое и нудное, поэтому поверим на слово специалистам-теоретикам: при несовпадении входных/выходных сопротивлений всех перечисленных устройств, часть энергии генератора отражается от нагрузки и в виде отражённой волны возвращается обратно в линию.
Таким образом, в результате сложения (по-умному интерференции) падающей и отражённой волн возникает стоячая волна, проявляющаяся в виде периодического изменения амплитуды напряжённости электрического и магнитного полей вдоль направления распространения сигнала в линии передачи.

Рис.1 Напряжённости электрического и магнитного полей в линии

На рисунке показаны эпюры напряжения в линии в различные моменты времени.
Налицо колебательный процесс изменения амплитуды, связанный с тесным взаимодействием входного сигнала постоянной амплитуды с сигналом, отражённым от несогласованной нагрузки и имеющим ту же самую частоту, но сдвинутым по отношению к входному по фазе.
К частоте этого колебательного процесса отнесёмся индифферентно, а вот размах изменения амплитуды как раз и определяет параметр коэффициента стоячей волны.
Формула здесь очень простая:

Величина, обратная КСВ, называется КБВ (коэффициент бегущей волны):
КБВ = 1/КСВ

Рассмотрим две крайние ситуации:

1. Umin=0, соответственно КСВ=∞ – волна чисто «стоячая», переноса энергии нет. На практике возникает в ситуациях КЗ или обрыва в цепи нагрузки.

2. Umin=Umax, КСВ=1, волна чисто «бегущая», отражений нет, вся энергия от источника попадает в нагрузку – можно получить только на резистивной нагрузке, либо идеально согласованных элементах в линии передачи.

А как нам нужно расстараться, чтобы правильно согласовать компоненты связной аппаратуры?
Ответ не сложен – уравнять все входные/выходные импедансы устройств, входящих в приёмо-передающий тракт.

Волновое сопротивление коаксиального кабеля (как правило, 50 либо 75 Ом) – это величина, зависящая от соотношения диаметров внутреннего и внешнего проводников, и довольно точно соответствует величине, которую указывает производитель.

Входной/выходной импеданс приёмника или передатчика не слишком сложными схемотехническими ухищрениями выводится на уровень сопротивления кабеля, соединяющего радиостанцию с антенной.

Остаётся самое ничего – согласовать антенну со всем остальным хозяйством для минимизации величины коэффициента стоячей волны.
Можно, конечно, сделать страшное лицо и гавкнуть в её сторону: Не гони обратную волну, падла!
Но это вряд ли. Не услышит. Она ж металлическая.

Короче, обсуждать тему проектирования и согласования приёмо-передающих антенн мы в рамках этой статьи не станем. Для этого есть достаточное количество умных и толстых книг, в которых без матерных излишеств и фонетических шероховатостей даны ответы на все касающиеся антенн головоломки.

А нам итак, всё понятно – необходимо стремиться к минимуму значения КСВ.
Если кто не догадался, глядя на формулу, или непринуждённо обошёл её вниманием – меньше единицы нам ужать этот параметр не удастся, как лбом не бейся ты о стенку. Поэтому наша глобальная цель – КСВ=1 .

Потери мощности в зависимости от КСВ

Ну, а если встал вопрос о том, какое отклонение КСВ от единицы можно считать приемлемым для наших радиолюбительских целей, следует припасть к формуле, позволяющей оценить потери мощности рассеивания за счёт неидеальности согласования входных/выходных сопротивлений устройств:

А слегка поднатужившись на сетевой полянке, пытливый ум отыщет и знаний золотую жилу в виде симпатичной таблички, представляющей из себя графическое выражение данной формулы.

Как можно увидеть, при относительно невысоких подводимых мощностях, потери из-за неединичного КСВ – не так уж и катастрофичны.
Даже при КСВ=5 потери эти составят 2,51дБ (или 44% от поступающей мощности), т. е. 56% всё-таки выскользнет из кабеля и будет доступно для излучения полотном антенны.
А при КСВ=2, вообще получается 0,48дб (или 11%) потерь.

А куда девается энергия потерь?
Бегает по фидеру, и чем больше КСВ, тем большая часть энергии идёт на «обогрев» кабеля. Поэтому при значительных выходных мощностях и высоком КСВ возникает опасность теплового повреждения кабеля.

На практике при проектировании радиопередающих устройств следует исходить из максимальной величины КСВ, не превышающей 2.
Вот что пишет в журнале Радиомир КВ-УКВ 12/2001, с.32-34 автор статьи «ПPOCTO ОБ АНТЕННАХ, ИЛИ ИЗМЕРЯЕМ КСВ» В. Башкатов:

«При КСВ=2, напряжение в максимуме стоячей волны всего лишь на 30% превышает то, что мы наблюдаем при КСВ=1.
Такое превышение, как правило, не опасно для широкополосных транзисторных усилителей мощности, даже если этот максимум напряжения окажется непосредственно в месте подключения фидера. Да и возрастание напряжения на элементах выходного каскада из-за его недогрузки ещё не будет катастрофическим.
Во всяком случае, для аппаратуры заводского изготовления с транзисторными выходными каскадами КСВ=2 устанавливается предельным, при котором гарантируется ее работоспособность».

А чему равен КСВ (SWR) в зависимости от сопротивлений источника и нагрузки?
В линии передачи с волновым сопротивлением ρ, нагруженной на чисто активную (резистивную) нагрузку с сопротивлением R, при R > ρ: КСВ = R/ρ, а при R

Что такое КСВ и чем его закусывать?

Коэффициент стоячей волны, его влияние на потери в линиях приёма и передачи. Онлайн калькулятор для расчёта КСВ при комплексном характере нагрузки

Так или иначе, любой индивид, интересующийся техникой радиосвязи, рано или поздно, сталкивается с лаконичным термином «КСВ». При этом, если даже ёжику понятно, что значение КСВ должно быть как можно меньше, то какова физическая сущность этого параметра, а также степень его влияния на уровень потерь энергии в линии ясно далеко не всегда и не каждому.

Начнём с торжественного, но малопонятного определения из википедии:
«Коэффициент стоячей волны (КСВ, от англ. standing wave ratio, SWR) – это отношение наибольшего значения амплитуды напряжённости электрического или магнитного поля стоячей волны в линии передачи к наименьшему».

Для мало-мальского понимания вышесказанного, давайте представим линию передачи, состоящую из источника сигнала (генератора, передатчика и т.д.), фидера (кабеля, соединяющего источник с антенной) и, собственно говоря, самой антенны.
Фанатично вдаваться в глубину процесса – дело долгое и нудное, поэтому поверим на слово специалистам-теоретикам: при несовпадении входных/выходных сопротивлений всех перечисленных устройств, часть энергии генератора отражается от нагрузки и в виде отражённой волны возвращается обратно в линию.
Таким образом, в результате сложения (по-умному интерференции) падающей и отражённой волн возникает стоячая волна, проявляющаяся в виде периодического изменения амплитуды напряжённости электрического и магнитного полей вдоль направления распространения сигнала в линии передачи.

Рис.1 Напряжённости электрического и магнитного полей в линии

На рисунке показаны эпюры напряжения в линии в различные моменты времени.
Налицо колебательный процесс изменения амплитуды, связанный с тесным взаимодействием входного сигнала постоянной амплитуды с сигналом, отражённым от несогласованной нагрузки и имеющим ту же самую частоту, но сдвинутым по отношению к входному по фазе.
К частоте этого колебательного процесса отнесёмся индифферентно, а вот размах изменения амплитуды как раз и определяет параметр коэффициента стоячей волны.
Формула здесь очень простая:

Величина, обратная КСВ, называется КБВ (коэффициент бегущей волны):
КБВ = 1/КСВ

Рассмотрим две крайние ситуации:

1. Umin=0, соответственно КСВ=∞ – волна чисто «стоячая», переноса энергии нет. На практике возникает в ситуациях КЗ или обрыва в цепи нагрузки.

2. Umin=Umax, КСВ=1, волна чисто «бегущая», отражений нет, вся энергия от источника попадает в нагрузку – можно получить только на резистивной нагрузке, либо идеально согласованных элементах в линии передачи.

А как нам нужно расстараться, чтобы правильно согласовать компоненты связной аппаратуры?
Ответ не сложен – уравнять все входные/выходные импедансы устройств, входящих в приёмо-передающий тракт.

Волновое сопротивление коаксиального кабеля (как правило, 50 либо 75 Ом) – это величина, зависящая от соотношения диаметров внутреннего и внешнего проводников, и довольно точно соответствует величине, которую указывает производитель.

Входной/выходной импеданс приёмника или передатчика не слишком сложными схемотехническими ухищрениями выводится на уровень сопротивления кабеля, соединяющего радиостанцию с антенной.

Остаётся самое ничего – согласовать антенну со всем остальным хозяйством для минимизации величины коэффициента стоячей волны.
Можно, конечно, сделать страшное лицо и гавкнуть в её сторону: Не гони обратную волну, падла!
Но это вряд ли. Не услышит. Она ж металлическая.

Короче, обсуждать тему проектирования и согласования приёмо-передающих антенн мы в рамках этой статьи не станем. Для этого есть достаточное количество умных и толстых книг, в которых без матерных излишеств и фонетических шероховатостей даны ответы на все касающиеся антенн головоломки.

А нам итак, всё понятно – необходимо стремиться к минимуму значения КСВ.
Если кто не догадался, глядя на формулу, или непринуждённо обошёл её вниманием – меньше единицы нам ужать этот параметр не удастся, как лбом не бейся ты о стенку. Поэтому наша глобальная цель – КСВ=1 .

Потери мощности в зависимости от КСВ

Ну, а если встал вопрос о том, какое отклонение КСВ от единицы можно считать приемлемым для наших радиолюбительских целей, следует припасть к формуле, позволяющей оценить потери мощности рассеивания за счёт неидеальности согласования входных/выходных сопротивлений устройств:

А слегка поднатужившись на сетевой полянке, пытливый ум отыщет и знаний золотую жилу в виде симпатичной таблички, представляющей из себя графическое выражение данной формулы.

Как можно увидеть, при относительно невысоких подводимых мощностях, потери из-за неединичного КСВ – не так уж и катастрофичны.
Даже при КСВ=5 потери эти составят 2,51дБ (или 44% от поступающей мощности), т. е. 56% всё-таки выскользнет из кабеля и будет доступно для излучения полотном антенны.
А при КСВ=2, вообще получается 0,48дб (или 11%) потерь.

А куда девается энергия потерь?
Бегает по фидеру, и чем больше КСВ, тем большая часть энергии идёт на «обогрев» кабеля. Поэтому при значительных выходных мощностях и высоком КСВ возникает опасность теплового повреждения кабеля.

На практике при проектировании радиопередающих устройств следует исходить из максимальной величины КСВ, не превышающей 2.
Вот что пишет в журнале Радиомир КВ-УКВ 12/2001, с.32-34 автор статьи «ПPOCTO ОБ АНТЕННАХ, ИЛИ ИЗМЕРЯЕМ КСВ» В. Башкатов:

«При КСВ=2, напряжение в максимуме стоячей волны всего лишь на 30% превышает то, что мы наблюдаем при КСВ=1.
Такое превышение, как правило, не опасно для широкополосных транзисторных усилителей мощности, даже если этот максимум напряжения окажется непосредственно в месте подключения фидера. Да и возрастание напряжения на элементах выходного каскада из-за его недогрузки ещё не будет катастрофическим.
Во всяком случае, для аппаратуры заводского изготовления с транзисторными выходными каскадами КСВ=2 устанавливается предельным, при котором гарантируется ее работоспособность».

А чему равен КСВ (SWR) в зависимости от сопротивлений источника и нагрузки?
В линии передачи с волновым сопротивлением ρ, нагруженной на чисто активную (резистивную) нагрузку с сопротивлением R, при R > ρ: КСВ = R/ρ, а при R < ρ: КСВ = ρ/R.
Если же нагрузка комплексная (то есть состоящая из последовательно соединённых активнного и реактивного сопротивлений), то Z = R + jX, а формула для расчёта КСВ приобретает следующий вид:

где k – коэффициент отражения, R – активное сопротивление нагрузки, X – реактивное сопротивление нагрузки, ρ – волновое сопротивление кабеля (50 Ом, 75 Ом и т. д.).

Поскольку формула, приведённая выше, получилась несколько сложнее, чем хотелось бы, то сдобрим материал калькулятором по расчёту КСВ для комплексной нагрузки, подключённой к кабелю с заданным волновым сопротивлением.

Онлайн калькулятор расчёта КСВ при комплексной нагрузке

Ну и напоследок:
КСВ обозначает лишь степень согласования радиостанции с фидером и антенной и никоим образом не указывает ни на эффективность антенны, ни на её частотные характеристики.
Наилучшим КСВ, равным 1 в широчайшей полосе частот, обладает линия с подключённым к кабелю 50-ти омным резистором. А кому придёт в голову использовать резистор в качестве антенны? Разве что отбившемуся от стаи, ярому фанату антеннки mini-whip.

На следующей странице рассмотрим простое, но весьма красивое решение вопроса измерения КСВ – мостовой КСВ-метр.

Что такое ксв для антенны

При монтаже и настройке систем радиосвязи часто измеряют некую не всем и не совсем ясную величину называемую КСВ. Что же это за характеристика, помимо спектра частот указываемая в характеристиках антенн?
Отвечаем:
Коэффициент стоячей волны (КСВ), коэффициент бегущей волны (КБВ), обратные потери это — термины, характеризующие степень согласования радиочастотного тракта.
В высокочастотных линиях передачи соответствие сопротивления источника сигнала волновому сопротивлению линии определяет условия прохождения сигнала. При равенстве этих сопротивлений в линии возникает режим бегущей волны, при котором вся мощность источника сигнала передается в нагрузку. Измеренное на постоянном токе тестером сопротивление кабеля покажет либо холостой ход либо короткое замыкание в зависимости оттого, что подключено к другому концу кабеля, а волновое сопротивление коаксиального кабеля, определяется соотношением диаметров внутреннего и внешнего проводников кабеля и характеристиками изолятора между ними. Волновое сопротивление это сопротивление, которое оказывает линия бегущей волне высокочастотного сигнала. Волновое сопротивление постоянно вдоль линии и не зависит от её длины. Для радиочастот волновое сопротивление линии считают неизменным и чисто активным. Оно приблизительно равно:
где L и С распределенные емкость и индуктивность линии;

Где: D – диаметр внешнего проводника, d – диаметр внутреннего проводника, — диэлектрическая проницаемость изолятора.
При расчете радиочастотных кабелей стремятся получить оптимальную конструкцию, обеспечивающую высокие электрические характеристики при наименьшем расходе материалов.
При использовании меди для внутреннего и внешнего проводников радиочастотного кабеля справедливы соотношения:
минимальное затухание в кабеле достигается при отношении диаметров

максимальная электрическая прочность достигается при:

максимум передаваемой мощности при:

исходя из этих соотношений, выбраны волновые сопротивления радиочастотных кабелей, выпускаемых промышленностью.
Точность и стабильность параметров кабеля зависят от точности изготовления диаметров внутреннего и внешнего проводников и стабильности параметров диэлектрика.
В идеально согласованной линии отражение отсутствует. Когда сопротивление нагрузки равно волновому сопротивлению линии передачи, падающая волна полностью поглощается в нагрузке, отраженная и стоячая волны отсутствуют. Такой режим называется режимом бегущей волны.
При коротком замыкании или холостом ходе линии на конце линии, падающая волна полностью отражается обратно. Отраженная волна складывается с падающей, и результирующая амплитуда в любом сечении линии является суммой амплитуд падающей и отраженной волн. Максимум напряжения называется пучностью, минимум напряжения узлом напряжения. Узлы и пучности не движутся относительно линии передачи. Такой режим называется режимом стоячей волны.
Если на выходе линии передачи подключена произвольная нагрузка, только часть падающей волны отражается обратно. В зависимости от степени рассогласования возрастает отраженная волна. В линии одновременно устанавливаются стоячая и бегущая волны. Это режим смешанных или комбинированных волн.
Коэффициент стоячей волны (КСВ) это безразмерная величина, характеризующая соотношение падающей и отраженной волн в линии, то есть степень приближения к режиму бегущей волны:
; как видно по определению, КСВ может меняться от 1 до бесконечности;
КСВ меняется пропорционально соотношению сопротивления нагрузки к волновому сопротивлению линии :

  • Обратные потери (return loss) — это отношение мощностей падающей и отраженной волн, выраженное в децибелах.

или наоборот:
Обратные потери удобно использовать при оценке эффективности фидерного тракта, когда потери кабеля, выражаемые в дБ/м можно просто просуммировать с обратными потерями.
Величина потерь на рассогласование зависит от КСВ:
в разах или в децибелах.
Передаваемая энергия при несогласованной нагрузкевсегда меньше, чем при согласованной. Передатчик, работающий на несогласованную нагрузку, не отдает в линию всю ту мощность, которую бы отдавал в согласованную. Фактически, это не потери в линии, а снижение мощности, отдаваемой в линию передатчиком. Насколько влияет КСВ на снижение, видно из таблицы:

КСВ

Мощность попадающая в нагрузку

Обратные потери
RL

Оцените статью
TutShema
Добавить комментарий