Что представляет собой электрический ток

Недавно мы предлагали читателям-гуманитариям задать вопросы обо всём техническом. В десятке самых популярных вопросов — как ток бежит по проводам и другие вопросы, связанные с электричеством. Постараемся ответить максимально просто.

«Ток» — от слова «течь», то есть что-то течёт. Можно представить, что это течёт вода.

«Электрический ток» — это когда текут некие частицы, которые передают электрический заряд.

«Электрический заряд» можно представить как кусочек энергии, который может заставить какие-то специальные механизмы что-то делать: крутиться, нагреваться, охлаждаться, сжиматься, светиться и т. д. Например, если у вас есть электрический моторчик, то он начинает вращаться, когда в него затекает электрический заряд.

Частицы, которые передают электрический заряд в токе, называются электронами. Можно представить, что это молекулы воды, хотя в реальности это сложнее.

Чуть сложнее: что же такое электрон?

Учёные называют электрон элементарной частицей — то есть самое простое, что бывает и что нельзя разобрать на части.

Считается, что электрон способен передавать минимально возможный в природе отрицательный заряд.

Нюанс с электронами в том, что его очень сложно поймать. Это не какая-то точка в пространстве, которую можно взять в маленький пинцет и пощупать. Это больше похоже на облако, внутри которого с какой-то вероятностью в каждой точке может быть электрон.

Есть теория, что электрон — это не просто частица, а проявление возмущения электромагнитного поля. Можно представить так: сквозь нас проходит невидимое поле, мы как бы в него погружены. Колебания этого поля создают в пространстве то, что мы воспринимаем как частичку-электрон. Это как если бы мы сидели на озере и видели волны, но не знали бы, что они берутся из озера.

Другая математическая концепция говорит, что электрон — это невидимая нам струна, которая вибрирует определённым образом. Это не доказано, но теория есть.

Как ток бежит по проводам

Для начала метафора:

  • Представьте, что у вас есть труба.
  • С одной стороны к трубе подключён большой бак с водой. Вода давит сама на себя.
  • С другой стороны у трубы кран. Пока он закрыт, вода никуда не льётся, потому что ей некуда.
  • Вы открываете кран, вода начинает литься: из места, где она на себя давит, в место, где на неё ничто не давит.

Как ток бежит по проводам(и другие вопросы)

Как это переносится на электричество:

  • У вас есть материал, в котором электроны могут перемещаться с некоторой свободой. Такие материалы называются проводниками — это всякие металлы, например медь.
  • В одном месте проводника создаётся избыток электронов, которые друг на друга давят, им там тесно и напряжно.
  • В другом месте проводника создаётся недостаток электронов.
  • Электроны начинают течь из места напряга в место расслабления (условно говоря).

Как ток бежит по проводам(и другие вопросы)

Что такое электрический ток


Чуть сложнее: как на самом деле бежит ток

На самом деле электроны в проводнике перемещаются очень мало и сами по себе не передают энергию из точки А в точку Б.

Правильнее сказать так: электроны двигаются в целом хаотично, а общим направлением их движения управляет электромагнитное поле. Именно поле определяет, сколько куда энергии передать, и именно поле отвечает за передачу этой энергии.

Но со стороны это выглядит неотличимо от того, как если бы сами электроны текли по проводам, как вода. Поэтому в учебниках обычно ограничиваются этим объяснением.

О природе электрического тока и основах электротехники

В данной короткой статье попытаюсь на пальцах объяснить основы электротехники. Для тех, кто не понимает откуда в розетке электричество, но спрашивать вроде как уже неприлично.

1. Что такое электрический ток.
«Главный инженер повернул рубильник, и электрический ток все быстрее и быстрее побежал по проводам» (с)

1.1 Пара общих слов по физике вопроса
Электрический ток — это движение заряженных частиц. Из заряженных частиц у нас имеются электроны и немножко ионы. Ионы — это атомы, которые потеряли или приобрели один или несколько электронов и поэтому потеряли электрическую нейтральность, приобрели электрический заряд. Так-то атом электрически нейтрален — заряд положительно заряженного ядра компенсируется зарядом электронной оболочки. Ионы обычно являются переносчиком заряда в электролитах, в металлических проводах носителями являются электроны. Металлы хорошо проводят ток, потому что некоторые электроны могут перескакивать от одного атому к другому. В непроводящих материалах электроны привязаны к своему атому и перемещаться не могут. (Напомню, данная статья — это объяснение физики на пальцах! Подробнее искать по «электронная теория проводимости»).

Будем рассматривать ток в металлических проводниках, который создаётся электронами. Можно провести аналогию между электронами в проводнике и жидкости в водопроводной трубе. (На начальном этапе электричество так и считали особой жидкостью.) Как через стенки трубы вода не выливается, так и электроны не могут покинуть проводник, потому что положительно заряженные ядра атомов притянут их обратно. Электроны могут перемещаться только в внутри проводника.

1.2 Создание электрического тока.
Но просто так ток в проводнике не возникнет. Это все равно, что залить воду в кусок трубы и заварить с обоих концов. Вода никуда не потечет. В куске проводника электроны тоже не могут двигаться в одном направлении. Если электроны почему-то сдвинутся вправо, то слева возникнет нескомпенсированный положительный заряд, который потянет их обратно. Поэтому электроны могут только прыгать от одного атома к другому и обратно. Но если трубу свернуть в кольцо, то вода уже может течь вдоль трубы, если каким-то образом заставить ее двигаться. Точно также и концы проводника можно соединить друг с другом, и тогда электроны смогут перемещаться вдоль проводника, если их заставить. Если концы проводника соединены друг с другом, то получается замкнутая цепь. Постоянный ток может идти только в замкнутой цепи. Если цепь разомкнута, то ток не идет. Чтобы заставить воду течь по трубе используется насос. В электрической цепи роль насоса выполнят батарейка. Батарейка гонит электроны по проводнику и тем самым создает электрический ток. По научному батарейка называется генератором. Так в электротехнике называют насос для создания электрического тока.

Бывают два типа генераторов — генератор напряжения и генератор тока.
Это фундаментальная вещь на самом деле, обратите внимание! См. рисунок ниже

рис 1. Генератор напряжения величиной U

рис 2. Генератор тока величиной I

На верхней картинке изображен генератор напряжения, на нижней — генератор тока. Насос -генератор напряжения создает постоянное давление, насос-генератор тока создает постоянный поток. Верхняя цепь разомкнута, и нижняя — замкнута. Рассмотрим, какими свойствами обладает генератор напряжения. Представим следующую цепь

рис 3. Генератор напряжения величиной U с нагрузкой R1

В терминах водопроводной аналогии, генератор -это насос, создающий постоянное давление, выключатель SW1 — это клапан, открывающийперекрывающий трубу, сопротивление R1 — это кранвентиль который насколько-то приоткрыт. Этот крантель можно прикрыть — сопротивление увеличится, поток воды уменьшится. Можно открыть побольше — сопротивление уменьшится, поток воды увеличится. Вроде все интуитивно понятно. Теперь представим, что мы открываем кран все больше и больше. Тогда поток воды будет увеличиваться и увеличиваться. При этом генератор напряжения по определению поддерживает напряжение (давление) постоянным, независимо от величины потока! Если кран открыть полностью и сопротивление станет равно 0, то поток станет равным бесконечности. При этом генератор все равно будет выдавать напряжение равное U! Конечно все это происходит в идеальной модели, когда мощность генератора бесконечна. Реальные генераторы (батарейки или аккумуляторы) примерно соответствуют этой модели в определенном диапазоне напряжений и токов.

Рассмотрим теперь цепь с генератором тока.

рис 4. Генератор тока величиной I с нагрузкой R2

Что делает генератор тока? Он гонит ток! Ему сказано гнать ток величиной I, и он его гонит, невзирая на величину сопротивления (насколько открыт кран). Открыт кран полностью — ток будет равен I. Напряжение (давление) будет равно.
Закрыт кран полностью — ток все равно будет равен I! Но при этом напряжение (давление) будет равно бесконечности. Опять таки в модели.
Из этих рассуждений интуитивно понятно вытекает основной закон электротехники — Закон Ома. ( «С красной строки. Подчеркни» (с))

2. Закон Ома.

Сначала c точки зрения генератора напряжения

Если к сопротивлению R приложить напряжение U, то через сопротивление пойдет ток
I =U/R Теперь с точки зрения генератора тока

Если через сопротивление R пропускать ток I, то на сопротивлении возникнет падение напряжения U=I*R

Вот как-то надо этот момент осознать. Эти две формулировки совершенно равноправны и применение их зависит только от того, какой генератор рассматривается. Можно конечно еще записать R=U/I. Что-то вроде — если к участку цепи приложено напряжение U, и при этом в этом участке проходит ток I, то цепь имеет сопротивление R. Дальше по хорошему надо рассматривать варианты цепей с параллельным или последовательным включением резисторов, но неохота. Это чисто технические моменты. Что-то вроде

рис 5. Последовательное включение резисторов

Через данную цепь из последовательно соединенных резисторов R1 и R2 проходит ток величиной I. Какое падение напряжения будет на каждом резисторе U1 и U2?
Используйте закон Ома и все!
Эта цепь кстати с генератором тока, поскольку входная переменная здесь ток. Ну то есть самого генератора тока может и не быть, просто ток в цепи известен и считается постоянным и равным I. Поэтому как бы этот ток гонит генератор тока.
Еще — говорят «падение напряжения на резисторе», потому что «производит» напряжение (давление) генератор, а после каждого резистора напряжение будет уменьшаться, падать на этом резисторе на величину U=I*R.

Хотя пару важных практических случаев все таки рассмотрим.

1. Самая важная схема.
Самая важная схема, с которой инженеру-электронщику предстоит иметь дело постоянно на протяжении всей жизни — это делитель напряжения.
( «С красной строки. Подчеркни» (с))

3. Делитель напряжения
Схема имеет вид.

рис 6. Делитель напряжения

Делитель напряжения представляет собой два резистора, соединенных последовательно друг с другом.

Кстати, резистором называется электронный компонент (деталька), которая реализует электрическое сопротивление определенной величины . Его также (детальку) часто называют сопротивлением. Получается немного тавтология — сопротивление имеет сопротивление R. Поэтому для деталей лучше использовать название резистор. Резистор сопротивлением 1 килоом, например.

Так вот. Что же делает эта схема? Два последовательных резистора имеют некоторое эквивалентное сопротивление, назовем его R12. По цепи проходит ток I, от плюса генератора к минусу через резистор R1 и через резистор R2. При этом на резисторе R1 падает напряжение U1=I*R1, а на резисторе R2 падает напряжение U2=I*R2. Согласно закону Ома. Напряжение U=U1+U2, как видно из схемы. Таким образом U=I*R1+I*R2=I*(R1+R2).
То есть эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Выражение для тока I=U/(R1+R2)
Найдем теперь, чему равно напряжение U2. U2=I*R2= U* R2/(R1+R2).

Пример картинки из интернета. Если резисторы равны, то входное напряжение Uвx делится пополам.

Второй важный случай — учет выходного сопротивления источника (генератора) и входного сопротивления приемника (цепи, к которой генератор подключен)

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

Идеальный генератор напряжения имеет нулевое выходное сопротивление, то есть при нулевом сопротивлении внешней цепи величина тока будет равна бесконечности ∝. Реальный генератор напряжения обеспечить бесконечный ток не может. Поэтому при замыкании внешней цепи ток в ней будет ограничен внутренним сопротивлением генератора, на рис. обозначен буквой r.

Кстати, правильный способ проверки пальчиковых батареек, заключается в измерении тока, которые они могут отдать. То есть на тестере выставляется предел 10А, режим измерения тока, и щупы прикладываются к контактам батареи. Ток в районе 1А или больше говорит о том, что батарейка свежая. Если ток меньше 0.5А, то можно выкидывать. Или попробовать в настенных часах, может сколько-то проработает.

Если выходное сопротивление источника (внутреннее сопротивление r на рисунке) соизмеримо со входным сопротивлением приемника (R3 на рисунке), то эти резисторы будут действовать, как делитель напряжения. На приемник при этом будет поступать не полное напряжение источника U, а U1=U*R3/(r+R3). Если эта схема предназначена для измерения напряжения U, то она будет врать!

В следующих статьях планируется рассмотреть цепи с конденсаторами и индуктивностями.
Затем диоды, транзисторы и операционные усилители.

Электрический ток. Электрическая цепь. Гальванические элементы. Аккумуляторы

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.

Обрати внимание!
Условия существования электрического тока:

• наличие свободных электрических зарядов;
• наличие электрического поля, которое обеспечивает движение зарядов;
• замкнутая электрическая цепь.

Электрическое поле создают источники электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.

Существуют различные виды источников тока:

• Механический источник тока — механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.

скачанные файлы.jpg

Рис. (1). Электрофорная машина

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.
Рис. (2). Тепловой источник тока

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

• Световой источник тока — энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.

Рис. (3). Световой источник тока

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

• Химический источник тока — внутренняя энергия преобразуется в электрическую в результате протекающих химических реакций.
Примером такого источника является гальванический элемент.

Рис. (4). Химический источник тока

Угольный стержень У (с металлической крышкой М) помещают в полотняный мешочек, наполненный смесью оксида марганца с углём С, а затем в цинковый сосуд Ц. Оставшееся пространство заполняют желеобразным раствором соли Р. При протекании химической реакции цинк заряжается отрицательно (отрицательный электрод), а угольный стержень — положительно (положительный электрод). Между заряженным угольным стержнем и цинковым сосудом возникает электрическое поле.

Из нескольких гальванических элементов можно составить батарею.

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой — отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В металлогидридных аккумуляторах отрицательный электрод состоит из порошкообразного железа, а положительный из гидроокиси никеля с добавками графита и окиси бария. Электролитом служит раствор едкого калия с добавками моногидрата лития.
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие.

Элементы электрической цепи:

  • источник напряжения;
  • потребители: резисторы, лампы, реостат.
  • измерительные приборы: вольтметр, амперметр, ваттметр, омметр;
  • соединительные провода;
  • ключи для размыкания и переключения цепи.

Для поддержания электрического тока в цепи необходимы источники электрической энергии: источники электрического тока, источники электрического напряжения.

Источник ЭДС (идеальный источник напряжения) — двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением.

Источник электрического тока — двухполюсник, создающий ток постоянного значения, не зависящего от значения сопротивления на подключенной нагрузке. Внутреннее сопротивление такого источника приближается к бесконечности.

Необходимое условие существования тока — замкнутая цепь! Это означает, что все элементы цепи должны быть проводниками электричества и в цепи не должно быть разрывов. В случае размыкания цепи ток прекращает течь. Именно размыкание цепи и лежит в основе работы всех реле, кнопок и выключателей.

Порядок сборки электрической цепи указывается на специальном чертеже, который принято называть схемой.

Управление электричеством

https://instrumentgid.ru/cifrovoj-voltmetr/

Мало просто понимать принцип работы электрического тока, важно научиться им управлять. Это существенно расширяет возможности человечества.

Осуществлять управление электрическим током можно вручную: самостоятельно замыкая и размыкая цепь, используя переключатели. Напряжение вокруг компонентов измеряют вольтметром.

Второй способ управлять электрическим током — с помощью специальных приспособлений. Это осуществляется при помощи разработанных алгоритмов и микроконтроллеров. Существуют разные виды контроллеров. Среди них есть простые, которые требуют программирования и «готовые» вычислительные платформы.

Делитель напряжения — позволяет получить меньшее напряжение из большего, при этом напряжение может быть как постоянным, так и переменным.

Простейшая схема делителя напряжения

Вышеуказанная схема содержит два сопротивления. Если величины сопротивления одинаковы, то на выходе напряжение будет в два раза меньше, чем на входе (по закону Ома). Для других случаев величина падения напряжений на резисторах делителя определяется по формулам

UR1 = I*R1; UR2 = I*R2

где UR1, UR2 — падения напряжения на резисторах R1 и R2 соответственно, I — ток в цепи. В схемах делителей выходное напряжение обычно снимают с нижнего по схеме резистора.

Делитель напряжения необходим, когда мы хотим получить точку с определенным сигналом. Например, нужно запитать маломощный двигатель, понизив его уровень и ограничив ток.

  • Линейный — представляет активное или реактивное сопротивление, в котором коэффициент передачи определяется, исходя из закона Ома.
  • Нелинейный — параметрические делители напряжения.

Принципы действия делителей в целом одинаковы, но зависят от определенных элементов. Наиболее распрострен делитель на резистора ввиду своей простоты.

Направление электрического тока

Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

Электрический ток в различных средах

В металлах

Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.

Электрический ток в металлах

В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.

В полупроводниках

В обычном состоянии у полупроводника нет свободных носителей зарядов. Но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. Происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).

Под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. Возникает упорядоченное движение свободных зарядов. Такую проводимость называют электронно-дырочной.

В вакууме и газе

Электрический ток возможен и в ионизированном газе. Заряд переносится положительными и отрицательными ионами. Ионизация газов возможна под действием излучения или вследствие сильного нагревания. Под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).

Электрический ток в газах

В вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. Носителями зарядов являются электроны. Для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.

Примером может служить работа вакуумной лампы или электронно-лучевая трубка.

В жидкостях

Оговоримся сразу – не все жидкости являются проводниками. Электрический ток возможен в кислотных, щёлочных и соляных растворах. Иначе говоря – в средах, где имеются заряженные ионы.

Если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). Под действием ЭДС катионы устремятся к катоду (минусу), а анионы к аноду. При этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. Такое явление называют электролизом.

Электроток в жидкостях

Для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6. Обратите внимание на вольтамперные характеристики (4 столбец).

Ваш браузер не поддерживается

Интернет-сервис Студворк построен на передовых, современных технологиях и не может гарантировать полную поддержку текущего браузера.

Chrome

Установить новый браузер

    Google Chrome

Yandex browser

Скачать
Яндекс Браузер

Opera

Скачать
Opera

Firefox

Скачать
Firefox

Edge

Скачать
Microsoft Edge

Нажимая на эту кнопку, вы соглашаетесь с тем, что сайт в вашем браузере может отображаться некорректно. Связаться с техподдержкой

Работаем по будням с 8.00 до 18.00 по МСК

Классификация тока

При движении заряженных частиц внутри макроскопического тела энергия называется электрическим током проводимости. Если же наблюдается движение макроскопических заряженных тел (к примеру — дождевые капли, имеющие заряд), ток будет конвекционным.

Основная классификация электрического тока предусматривает использование формулировки постоянного и переменного тока. Также рассмотрим и другие виды:

  • Постоянный ток — его направление и величина остаются неизменными во времени. Такой ток бывает пульсирующим, однонаправленным или выпрямленным переменным.
  • Переменный ток — изменяется во времени, под этим обозначением подразумевается любой вид непостоянного тока.
  • Периодический ток — его мгновенные значения, как правило, повторяются в неизменной последовательности через разные временные промежутки.
  • Синусоидальный ток — является периодическим электротоком, выполняющим синусоидальную функцию времени. Это означает, что происходит изменение электростатического потенциала каждого конца в проводнике по отношению к потенциалу другого конца — с отрицательного на положительный и наоборот. Это способствует возникновению тока, который непрерывно изменяет свое направление и амплитудное значение. Квазистационарный ток — это переменный вид тока, который изменяется довольно медленно. Его мгновенные значения достаточно точно выполняют соответствуют законам постоянных токов (Ома, правилам Кирхгофа, и др.). Как и в постоянном токе, в квазистационарном имеется одинаковая сила тока на абсолютно всех сечениях электроцепи.
  • Высокочастотный ток — относится к переменному току, частота которого превышает несколько десятков герц. Если волна излучения имеет длину, близкую к размерам элементов, входящих в электрическую цепь, могут быть нарушены условия квазистационарности. Следовательно, для проектировки таких цепе необходим особый подход.
  • Пульсирующий ток — представляется периодическим электротоком, в котором за определенный период среднее значение равно нулю.
  • Однонаправленный ток — является током, постоянно сохраняющим свое первоначальное направление.

Характеристики

Классификация тока

Свойства электрического тока характеризуются следующими величинами:

Сила и плотность тока.

Силой тока характеризуется интенсивность, с которой движутся электрические заряды в проводнике, а также количество проходящих частиц через плоскости поперечных сечений проводников. Единица измерения — ампер A.

Плотность электрического тока является векторной величиной, где направление вектора соответствует направлению, в котором двигаются положительные заряды. Единица измерения — A/м2.

Величины используются для формулирования знаменитого закона Ома, где на определенном участке электрической цепи для выражения разницы потенциалов (или напряжения) используется соотношение: U=I*R (U-напряжение, I-сила тока, R-сопротивление).

Мощность

Работа электрических сил направлена против реактивного и активного сопротивлений. При пассивном сопротивлении происходит преобразование электроэнергии в тепловую. Электрическая мощность — это действие электричества в установленный промежуток времени. Единица измерения: ватт (Вт).

Частота

Эта характеристика указывает на изменение количества периодов (колебаний) за определенные единицы времени. Единица измерения — герц Гц. Один герц равняется одному колебанию в секунду. Промышленному току свойственна стандартная частота в 50 Гц.

Ток смещения

Это условное название, так как в нем заряд не переносится. В то же время, токи проводимости и смещения определяют зависимость от них магнитного поля. Явным примером является конструкция конденсатором: даже если между обкладками конденсационного устройства при зарядке/разрядке заряды никак не перемещаются, наблюдается протекание тока смещения через конденсатор, тем самым обеспечивая замыкание электрической цепи.

Лицензированная электролаборатория компании ТМ Электро проведёт качественные испытания Ваших электросетей.

Оцените статью
TutShema
Добавить комментарий