Что лежит в основе свечения светодиодов

Эта статья раскрывает секреты светодиодов, которые известны только профильным специалистам. Вы узнаете какие виды led выпускаются промышленностью, познакомитесь с технологиями их изготовления и характеристиками. Отдельный раздел посвящен особенностям модельного ряда светодиодов, применяемых в лентах и светильниках.

Мы расскажем как распознать маркировку светоизлучающих диодов, как узнать параметры светодиода, определить расположение анода/катода по малозаметным признакам. Вы убедитесь, что обычная линейка поможет узнать типоразмер smd-диода и затем найти о нем необходимую информацию.

Всё о видах светодиодов

Вначале светодиоды применялись лишь в качестве индикаторов на аппаратуре и оборудовании. Яркость индикаторных светоизлучающих диодов была невелика, и их свечение было хорошо заметно только в темноте. Изделия отличались выводной конструкцией – из круглого корпуса выходили два вывода (анод и катод).

С развитием технологий и появлением потребности в альтернативных источниках света появились более мощные и яркие диоды. Результатом многолетних разработок стали SMD-диоды и многокристальные COB-диоды. Они используются в современных светильниках, люстрах и прожекторах, выгодно отличаясь от ламп накаливания и галогеновых большей светоотдачей и яркостью, достигающей нескольких тысяч люменов.

Всё о видах светодиодов

Прибор-полупроводник, или light-emittingdiode, называют LED, что означает «светоизлучающий диод». Конструкция устройства включает корпус с контактными выводами, оптическую систему из кристалла, рефлектора, отражающего поток света, рассеивателя для увеличения угла свечения. Два полупроводника обеспечивают p-n переход электронов от донора к реципиенту за счет наличия отверстий в одном элементе и свободных электронов в другом.

Вначале светодиоды применяли в качестве индикаторов на различном оборудовании. Свечение диодов из-за небольшой яркости было заметно лишь в темноте. По виду устройства отличались выводной конструкцией — анод и катод выходили из круглого корпуса.

С развитием технологий появились новые типы и их характеристики стали более совершенными. Более мощные и яркие диоды используют для современных светильников, они отличаются от галогеновых источников, ламп накаливания большой светоотдачей и яркостью.

Классифицируют по группам:

  • индикаторные — диоды небольшой мощности, умеренной яркости. Устройства, маленькие по размеру, используют для цветовой индикации, подсветки приборных панелей;
  • осветительные — приборы различной мощности, до нескольких десятков Ватт, что обеспечивает свечение высокой интенсивности, яркость. Применяют внутри автомобильных фар, прожекторов и различных приборов, в лампах для общего освещения помещений, в светодиодных лентах.

Главные три типа светодиодов

В результате многолетних разработок налажено производство разных типов светодиодов по функциональному предназначению, размерам и конструктивному исполнению. При изготовлении применяют модели разных форм, яркости, способу монтажа.

ВЫ думаете что это СВЕТОДИОД? А вот и нет.В этом корпусе могут быть ЧЕТЫРЕ разных устройства

Выводные светодиоды

Характеризуются как маломощные источники света, оснащены специальными «ножками», при помощи которых производится монтаж в отверстия печатной платы. Модели с небольшим углом свечения применяют в изготовлении вывесок, рекламных табло. Используют как индикаторные маячки и подсветку для электротехники, а также устанавливают в «лазерные» указки, бытовые фонари и светильники.

Предназначены для поверхностного монтажа, классифицируют модели в зависимости от их диаметра. Размер моделей и отличия светодиодов влияют на яркость, габаритность источника освещения. Типовые модификации корпусов:

  • круглой формы от 3 до 10 мм;
  • прямоугольные «Пиранья» с четырьмя ножками, что повышает устойчивость к вибрации. Модели часто используют в приборной панели автомобиля. Долговечны, благодаря надежной системе теплоотвода;
  • цилиндрические диоды диаметром 3, 5 или 8 мм. Однонаправленные выводы проволочного типа.

Монтаж осуществляют с помощью паяльника и припоя. Используют металлические держатели для диодов с винтовым креплением.

SMD-светодиоды

Универсальные модели с крепким корпусом используют для ламп общего назначения, индикаторных панелей, аварийного освещения. Популярны ленты на SMD-диодах в виде линеек и модулей.

В основе диода светодиодный кристалл, который расположен в квадратном или прямоугольном корпусе. Оптическое покрытие готового чипа, как правило, из люминофора. Фокусирующая линза формирует диапазон направленности светового потока. Выводы в виде металлических полосок. На плату SMD-диодов устанавливают методом поверхностного монтажа.

Благодаря надежному теплоотводу мощные модели сохраняют стабильный режим работы на протяжении нескольких лет.

COB-светодиоды

В отличие от дискретных чипов в отдельных корпусах идея COB-матрицы помогает получить высокую плотность кристаллов с суммарным световым потоком высокой интенсивности и однородности. Используется керамическая или алюминиевая подложка, на которой диоды, соединенные в кластеры, герметично заливают люминофором.

LED характеристики компактной матрицы нормированы рабочим током в соответствии с видом используемых кристаллов, с требуемой на выходе мощностью/яркостью.

Типоразмеры светодиодов

Единого стандарта для технической маркировки типоразмеров светодиодных изделий не существует, поэтому каждый производитель полупроводниковой техники использует свою собственную систему.

Единственной системой, которая применяется для обозначения размеров светодиодов, является общая классификация типоразмеров компонентов поверхностного монтажа, т.е. подходит для светодиодов изготовленных по технологии SMD.

Обозначение на схеме

Традиционным обозначением светодиодов является графический значок обычного диода, помещенный в круг и двумя стрелками, направленными наружу, что указывает на его излучающую способность (в отличие от фотодиода с обратным назначением).

Обозначение светодиода на схеме

Общепринятым обозначением светодиодов на принципиальных электрических схемах выступает латинская аббревиатура HL, что означает по ГОСТ 2.702-2011 — приборы световой сигнализации.

Светодиоды. Принцип работы, описание, параметры

Светодиодом называется полупроводниковый диод, предназначенный для преобразования электрической энергии в энергию некогерентного светового излучения. При протекании через диод прямого тока происходит инжекция неосновных носителей заряда (электронов или дырок) в базовую область диодной структуры Процесс самопроизвольной рекомбинаци инжектированных неосновных носителей заряда, происходящих как в базовой области, так и в самом p-n переходе, сопровождается переходом их с высокого энергетического уровня на более низкий; при этом избыточная энергия выделяется путем излучения кванта света.

Чтобы кванты энергии – фотоны, освободившиеся при рекомбинации, соответствовали квантам видимого света, ширина запрещенной зоны исходного полупроводника должна быть относительно большой (Еg > 1,8 эВ). Исходя из этого ограничения, для изготовления светодиодов используются следующие полупроводниковые материалы: фосфид галлия (GaP), карбид кремния (SiC), твердые растворы: галлий—мышьяк—фосфор (GaAsP) и галлий—мышьяк—алюминий (GaAsAl), а также нитрид галлия (GaN), который имеет наибольшую ширину запрещенной зоны (Eg > 3,4 эВ), что позволяет получать излучение в коротковолновой части видимого спектра вплоть до фиолетового.

Путем добавления в полупроводниковый материал атомов веществ-активаторов можно изменять в некоторых пределах цвет излучения светодиода. Например, на основе фосфида галлия, легированного определенным количеством цинка, кислорода или азота, получают светодиоды зеленого, желтого и красного цветов свечения. Тройные соединения GaAsP и GaAsAl используют, в основном, для получения светодиодов красного цвета свечения.

Обычно излучение светодиодов является монохроматическим с оговоренной для каждого типа максимальной длиной волны, имеющий незначительный разброс внутри каждого типа. Светодиоды с управляемым цветом свечения изготавливаются на основе двух светоизлучающих переходов, один из которых имеет резко выраженный максимум спектральной характеристики в красной полосе, другой — в зеленой. При совместной работе цвет результирующего излучения зависит от соотношения токов через переходы. Основным технологическим методом изготовления светодиодов является метод эпитаксиального наращивания. Это жидкофазная эпитаксия или эпитаксия из газовой фазы. В некоторых случаях, в основном, при использовании карбида кремния, применяется метод диффузии примесей (акцепторных или донорных) из газовой фазы, проводящийся внутри кварцевых ампул.

Одним из основных параметров светодиодов является: яркость — величина, равная отношению силы света к площади светящейся поверхности (измеряется в канделах на квадратный метр).

Спектральная характеристика светодиода выражает зависимость интенсивности излучения от длины волны излучаемого света и дает представление о цвете свечения светодиода. Длина волны излучаемого света определяется разностью энергий двух энергетических уровней, между которыми происходит переход электронов на излучательном этапе процесса рекомбинации и определяется исходным полупроводниковым материалом и легирующими примесями.

Излучение светодиода также характеризуется диаграммой направленности (угол половинной яркости), которая определятся конструкцией светодиода, наличием линзы и оптическими свойствами защищающего кристалл материала (измеряется в градусах). Излучение светодиода может быть узконаправленным или рассеянным.

Основные параметры светодиодов зависят от окружающей температуры. С увеличением температуры яркость (сила света), а также падение напряжения на светодиоде уменьшается. Зависимость яркости от температуры практически линейная, в интервале рабочей температуры может изменяться в 2-3 раза. Промышленные светодиоды имеют сравнительно большой разброс параметров и характеристик от образца к образцу.

Светодиоды, применяемые в наружной рекламе, должны соответствовать самым высоким требованиям к зависимости яркости от температуры окружающей среды и выдерживать диапазон температур от –40°С до +80°С, не изменяя яркости (силы света). Такие параметры светодиодов могут обеспечить только фирмы-лидеры в своей области, работающие на самом современном высокотехнологичном оборудовании и использующие самые современные технологии.

Светодиоды обладают высоким быстродействием. Излучение нарастает за время менее 10-8с после подачи импульса прямого тока, что делает их незаменимыми в световой рекламе, несущей быстро сменяемую информацию.

По внешнему конструктивному признаку светодиоды подразделяются на приборы в металлических корпусах со стеклянной линзой (обладают весьма острой направленностью излучения) и пластмассовых корпусах из оптически прозрачного, чаще цветного компаунда, создающего рассеянное излучение. Именно эти светодиоды и применяются в наружной и интерьерной рекламе, обеспечивая одновременно и достаточную яркость, и максимально возможный угол просмотра.

Принцип работы светодиода

Световое излучение светодиода можно представить так, как показано на рисунке 3.

Схема работы светодиода

Энергетическое расстояние между валентной полосой и полосой проводимости называется энергетическим зазором (шириной запрещенной зоны) и обычно обозначается символом Eg. Когда электрон переходит в более низкое энергетическое состояние, он может испускать избыточную энергию в виде электромагнитного излучения, или он может передать часть этой энергии кристаллической решетке путем увеличения тепловых колебаний. Полупроводники, в которых электроны практически всю свою избыточную энергию излучают в виде электромагнитного излучения, используются для изготовления светодиодов.

Электроны испускают электромагнитное излучение порциями, называемыми фотонами. Энергия фотонов зависит от частоты электромагнитного излучения. Связь между энергией фотона и частотой выражается формулой Планка:

где Ef — энергия фотона, h — постоянная Планка, f — частота фотона.

Когда свет испускается в результате радиационной рекомбинации, энергия фотона приблизительно равна энергии ширины запрещенной зоны Eg.

Цвет света, который мы наблюдаем, напрямую зависит от частоты фотонов. Таким образом, цвет света, излучаемого диодом, зависит от величины энергии Eg материала диода.

Для светодиодов используются другие материалы, чем для выпрямительных диодов. Кремний и германий имеют слишком низкое значение Eg и, кроме того, передают часть энергии, потерянной при переходе в валентную зону, кристаллической решетке.

Примеры материалов, используемых для изготовления светодиодов, и цвета излучаемого ими света приведены в таблице:

Полупроводниковый составЦвет испускаемого излучения
AlGaAsкрасный, инфракрасный
AlGaPзеленый
AlGaInPоранжево-красный, оранжевый, желтый, зеленый
GaAsPкрасный, красно-оранжевый, желтый
GaPкрасный, желтый, зеленый
GaNзелёный, синий
InGaNзеленый, синий, ближний ультрафиолет
SiCсиний
Al2O3синий
ZnSeсиний

Схема конструкции светодиода показана на рис. 4.

Схема конструкции светодиода

Светоизлучающим элементом является светодиодный чип — т.е. светодиод, задача термопрокладки — отводить выделяемое тепло, а задача линзы — соответствующим образом фокусировать свет, излучаемый светодиодом.

Применение светодиодов

Ширина запрещенной зоны является характеристикой материала диода — именно поэтому диоды по своей природе испускают монохроматическое излучение. Изобретение в начале 1990-х годов диода с синей подсветкой и, соответственно, способность диодов создавать любой цвет света положили начало эпохе светодиодов. Значительное снижение стоимости производства светодиодных источников света в последние годы (например, светодиодные «лампочки» за последние пять лет стали дешевле почти в десять раз) означает, что светодиоды становятся доминирующим источником света практически во всех областях.

Белый свет от светодиодных источников обычно получают тремя способами:

  1. Три светодиода разного цвета помещаются в один корпус, чтобы в сумме получить белый свет. Этот тип диодов называется RGB. Если к этому типу диодов подключить регулятор, позволяющий регулировать ток, проходящий через отдельные диоды, то можно получить различные цвета света.
  2. Светодиод, излучающий ультрафиолет, покрыт трехцветным люминофором, который преобразует ультрафиолетовое излучение в белый свет.
  3. Синий светоизлучающий диод покрыт люминофором, который при возбуждении синим светом излучает желтый свет. При смешивании синего и желтого света получается белый свет.

Основными преимуществами светодиодов являются их эффективность, долговечность — светодиоды могут проработать до 100 000 часов, а также универсальность.

Эффективность источников света описывается величиной, называемой световой отдачей. Световая отдача, обозначаемая буквой , определяет общую мощность полученного света по отношению к мощности электрического тока, который этот свет производит. Она выражается формулой:

где Ф — световой поток, а P — мощность электрического тока, потребляемого источником, создающим поток. Световой поток — это величина, характеризующая мощность излучаемого света, а его единицей является люмен (лм). Световая отдача измеряется в люменах на ватт (лм/Вт). Сравнение световой отдачи различных источников света показано в таблице:

Источник светаСветовая отдача [лм/Вт]Приблизительный эквивалент традиционных ламп накаливания [единиц]
Традиционная лампочка5‑201
Лампа с парами ртути15‑252
Галогенная лампа20‑302
Ртутная газоразрядная лампа30‑654
Энергосберегающая люминесцентная лампа40‑1006
Светодиод (LED)50‑3006
Металлогалогенная лампа80‑1256
Галогенная ртутная лампа70‑1007

Как видно из таблицы, диоды значительно превосходят по эффективности традиционные источники света: лампы накаливания, галогенные или люминесцентные лампы (флуоресцентные трубки). Диодам уступают более дорогие натриевые и металлогалогенные лампы, в которых свет излучается в результате разрядов, возникающих в парах металлов. Эти источники используются для освещения улиц, спортивных залов и стадионов.

Универсальность светодиодов также является важным преимуществом. Мощность светодиодных источников варьируется от нескольких милливатт до нескольких десятков ватт. Они используются в качестве всех типов индикаторных лампочек в различных типах электрических и электронных устройств. Например: лампочки — индикаторы работы электрических и электронных устройств, индикаторы заряда батареи и т.д.

Светодиоды начали вытеснять традиционные источники света в подсветке ЖК-экранов телевизоров и ноутбуков несколько лет назад, что позволило уменьшить их толщину. Следующим шагом в развитии технологии стало использование органических соединений для производства светодиодов и появление технологии OLED и ее последующих вариантов (AMOLED, Super AMOLED). Дисплеи, изготовленные с использованием технологии OLED, очень тонкие, поскольку не требуют подсветки, так как диоды генерируют свет самостоятельно. Этот тип дисплея сначала получил широкое распространение в смартфонах, а затем в телевизионных экранах.

В данной статье представлены лишь некоторые из областей применения светодиодной технологии. Практически везде, где используются источники света, можно встретить светодиоды. К вышеперечисленным преимуществам этих светодиодов можно добавить, что они начинают светить сразу после включения, достаточно устойчивы к частоте включений, устойчивы к ударам и влиянию атмосферы, а также могут быть использованы для получения практически любого цвета света.

Как устроен светодиод

Светодиод состоит из полупроводникового материала, обычно германия, галлия и индия, примеси, придающей светодиоду желаемый цвет, и электродов. Один из электродов является анодом, а другой — катодом. Между ними имеется активный слой полупроводника, который испускает свет при пропускании тока через него.

Цвет светодиода определяется полупроводниковым материалом и примесью, добавленной к нему. К примеру, германий и галлий арсенид образуют красные светодиоды, а галлий фосфид и арсенид галлия — зеленые. Путем контролируемого добавления различных элементов в полупроводниковую основу можно получить светодиоды разных цветов, включая синий, желтый и белый.

Электрические характеристики

Светодиоды имеют низкое напряжение прямого смещения, обычно около 1,3-3,3 вольта для различных цветов. Они также обладают высокой эффективностью преобразования энергии, что делает их более энергоэффективными по сравнению с традиционными источниками света. Кроме того, светодиоды отличаются долговечностью и малым временем отклика, что делает их идеальными для использования в электронике.

Светодиоды типа DIP (Dual Inline Package) представляют собой классическую версию светодиода, которая используется уже долгое время. Они имеют прямоугольную или круглую форму и два электрода, которые подключаются к источнику питания. Светодиоды типа DIP находят применение в осветительных приборах, сигнальных индикаторах и других электронных устройствах.

Светодиоды и их применение

Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)— полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход. СветодиодыДостоинства: 1. Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)
2. Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности
3. Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие
4. Миниатюрность
5. Долгий срок службы (долговечность)
6. Высокий КПД,
7. Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление
8. Большое количество различных цветов свечения, направленность излучения
9. Регулируемая интенсивность Недостатки: 1. Относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз
2. Малый световой поток от одного элемента
3. Деградация параметров светодиодов со временем
4. Повышенные требования к питающему источнику Внешний вид и основные параметры: У светодиодов есть несколько основных параметров: 1. Тип корпуса
2. Типовой (рабочий) ток
3. Падение (рабочее) напряжения
4. Цвет свечения (длина волны, нм)
5. Угол рассеивания В основном, под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод — полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение. Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до жёлтого цвета. Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зелёного свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода. В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д. Схема включения и расчет необходимых параметров: Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод («минус»), а другой — анод («плюс»). Подключение счетодиодаСветодиод будет «гореть» только при прямом включении, как показано на рисунке При обратном включении светодиод «гореть» не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения. Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Нетрудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется «рабочей» зоной, так как именно здесь обеспечивается работа светодиода. Зависимости тока от напряжения1. Имеется один светодиод, как его подключить правильно в самом простом случае? Чтобы правильно подключить светодиод в самом простом случае, необходимо подключить его через токоограничивающий резистор. Пример 1 Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт. Рассчитаем сопротивление токоограничивающего резистора R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм То есть, надо взять резистор сопротивлением 100 Ом P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода 2. Как подключить несколько светодиодов? Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления. Пример 1. Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт. Производим расчет: 3 светодиода на 3 вольта = 9 вольт , то есть 15 вольтового источника достаточно для последовательного включения светодиодов Расчет аналогичен предыдущему примеру R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм Пример 2. Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви. R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые. Пример 3. Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление Например имеются 5 разных светодиодов:
1-ый красный напряжение 3 вольта 20 мА
2-ой зеленый напряжение 2.5 вольта 20 мА
3-ий синий напряжение 3 вольта 50 мА
4-ый белый напряжение 2.7 вольта 50 мА
5-ый желтый напряжение 3.5 вольта 30 мА Так как разделяем светодиоды по группам по току
1) 1-ый и 2-ой
2) 3-ий и 4-ый
3) 5-ый рассчитываем для каждой ветви резисторы:
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм аналогично
R2 = 26 Ом
R3 = 117 Ом Аналогично можно расположить любое количество светодиодов ВАЖНОЕ ЗАМЕЧАНИЕ. При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали. 3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта? Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение). 4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано. Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение). RGB-светодиоды RGB-светодиодПолноцветный светодиод или по другому RGB-светодиод — Red, Green, Blue. Смешивая эти три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность (Red: 100%, Green: 100%, Blue: 100%), то получится свечение белого цвета. Если зажечь только два (Red: 100%, Green: 100%, Blue: 0%), то будет светиться желтый цвет. Конструктивно, RGB-светодиод состоит из трех кристаллов под одним корпусом и имеет 4 вывода: один общий и три цветовых вывода.
RGB-светодиоды бывают:
1. С общим анодом (CA)
2. С общим катодом (CC)
3. Без общего анода или катода (6 выводов). Как правило в SMD-исполнении. Структурная схема RGB-светодиодаСамый длинный вывод RGB-светодиода, обычно является общим (анодом или катодом). При подключении данных светодиодов, следует учесть, что напряжение, подаваемое для свечения цвета может быть разным для разных цветов.
К примеру, возьмем 5мм светодиод MCDL-5013RGB (I=20мА):
Ured = 2.0 Вольт
Ugreen = 3.5 Вольт
Ublue = 3.5 Вольт Свечение RGB-светодиодаТакже следует отметить то, что для некоторых типов RGB-светодиодов необходимо использовать рассеиватель, иначе будут видны составляющие цвета. ВАЖНОЕ ЗАМЕЧАНИЕ! Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем, что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит при немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Sivent Опубликована: 2008 г. 0 2

Вознаградить Я собрал 0 1

Оцените статью
TutShema
Добавить комментарий