Чем меньше сопротивление тем больше сила тока

Немец Георг Ом изучал фичи электричества в 19 веке, и стал таким великим физиком, что в честь него теперь законы называют. И не зря. Это мы уже хорошо знакомы с ним и его возможностями, потому что он есть в каждом доме. А тогда люди только начали изучать движение частиц, и не все было так очевидно. Поэтому наш ученый долго следил за потоком частиц и вывел закономерности.
В такой форме закон Ома дошел до наших дней: сила тока через участок цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению этого участка.
Это значит, что здесь линейная зависимость: при увеличении напряжения, увеличится сила потока и наоборот.
Формула: I = U / R, где I — сила тока, U — напряжение, R — сопротивление.
Это правило может применяться далеко не для всех условий. Оно характерно для постоянного тока, для переменного используются другие понятия. Но в ОГЭ и ЕГЭ тебе точно встретятся задачи, для решения которых придется вспомнить об этой зависимости.

Проверим твою внимательность: заметил, что в самом определении закона Ома используется термин «участок цепи»?
Определние, которое мы приводили выше, и является законом Ома для участка цепи.
Что такое этот загадочный участок? Это часть электросхемы, которая содержит определенный набор элементов. В этой части мы и будем проводить наши изменения и вычисления, не обращая внимания на другие условия.
Когда мы имеем дело с таким отдельно взятым участком, смело можем использовать выражение, которое, надеемся, ты запомнил.

Закон Ома для полной цепи

С участком разобрались, теперь время веселиться на полную. Не катушку, конечно, но цепь. Ее также называют замкнутой. Закон Ома для полной электросхемы преобразуется, так как нужно учитывать, что на разных участках наши заряженные частицы встречаются с разными сопротивлениями: потребителя энергии и источника.
Давай представим, что схема электричества — это дорожка, по которой бегут заряды. Но на этой дорожке мы решаем установить ворота (потребитель энергии), и они становятся препятствие для зарядов. Это препятствие называется внешним сопротивлением и обозначается буквой R. Но и сами частицы будто имеют внутренние барьеры в этом забеге (источник). Эту сложность называют внутренним сопротивлением и обозначают буквой r.
Чтобы справиться с забегом, заряды должны использовать волшебное средство — электродвижущую силу (ЭДС). Она обозначается буквой E. Она помогает зарядам преодолеть и внешнее препятствие, и внутренние повороты. Количество нужной волшебной силы зависит от количества бегущих зарядов: чем их больше, тем большая сила нам нужна.
И, знаешь, мы можем легко вычислить, сколько волшебного средства нам нужно: E = I * r + I * R. E — ЭДС (Вольт), I — сила тока (Ампер), r — это внутреннее сопротивление (Ом), а R — внешнее сопротивление (Ом).
Закон Ома для полной цепи: сила тока в замкнутой цепи прямо пропорциональ­на ЭДС в цепи и обратно пропорциональ­на общему (внутреннему и внешнему) сопротивлению цепи.
Формула закона Ома для замкнутой цепи: I = E / r + R .

Представим схему с источником энергии и с лампочкой. И следуем закону Ома.
Если мы увеличим напряжение, то лампочка будет светиться ярче, ведь сила потока зарядов увеличится. Если же у нас будет лампочка с большим сопротивлением, то она будет светиться слабее.

banner

Проверь насколько ты готов к экзамену по физике

banner

Это займет всего 15 минут, и в конце теста,
тебя будет ждать персональный
образовательный план пройти тест

Формулировка и объяснение закона Ома

Закон немецкого учителя Георга Ома очень прост. Он гласит:

Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

Пусть у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

Закон запишется в следующем виде:

Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

Мы поможем сдать на отлично и без пересдач

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа от 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Электрическое сопротивление

Сила тока (I) прямо пропорциональна напряжению (U). Это означает следующее: во сколько раз изменяется напряжение, во столько раз изменяется и сила тока.
Сила тока (I) обратно пропорциональна электрическому сопротивлению (R). Поэтому чем больше сопротивление, тем меньше сила тока, протекающего в проводнике.

Удельное сопротивление

Причиной электрического сопротивления является тепловое движение образующих материал атомов или молекул. Частицы колеблются около своих мест и мешают перемещению электронов. Это можно сравнить с длинным коридором, в котором одновременно перемещается много людей. И насколько быстро можно двигаться вперед, зависит от различных причин.
Электрическое сопротивление характерно для всех веществ и зависит от:

Материала проводника тока ρ Длины проводника (l) Площади поперечного сечения проводника (S)
Для каждого материала характерно его удельное сопротивление, которое обозначают буквой ρ и которое можно найти в таблице удельных сопротивлений.Чем длиннее проводник электричества, тем больше его электрическое сопротивление.Чем меньше площадь поперечного сечения проводника электричества, тем больше электрическое сопротивление.
Пример с коридором:
движение вперёд зависит от того, сколько людей в нём находится, как каждый из них двигается, насколько они полные или худые.
Пример с коридором:
чем длиннее коридор, тем дольше и труднее путь.
Пример с коридором:
чем уже коридор, тем труднее пробираться сквозь толпу людей.

Обрати внимание!

Удельное сопротивление металлов небольшое, а изоляторов — очень большое. В цепях, в которых электрический ток должен производить большую теплоту (например, в обогревателях), используют проводники с большим удельным сопротивлением, например, нихром. Току труднее течь, увеличивается тепловое движение частиц, в результате проводник нагревается. У алюминия низкое удельное сопротивление, поэтому его можно использовать для передачи электроэнергии.

Электрическое сопротивление человеческого тела может изменяться от 20000 Ом до 1800 Ом.

Чтобы электрическая цепь обеспечивала необходимую силу тока, в неё включают резисторы.
Резистор — прибор с постоянным сопротивлением.

Резисторы имеются во всех телевизорах, компьютерах, радиоприёмниках и т.д.

Чтобы изменить силу тока в электрической цепи, используют реостаты.

Реостат — прибор с переменным сопротивлением.

В составе реостата имеется подвижный контакт, при помощи которого изменяется длина участка, включённого в цепь.

Мощность

Мощность можно вычислить, умножив силу тока на напряжение. Логично, что при делении мощности на напряжение мы получаем значение силы тока.

На большинстве современных электрический приборов указана потребляемая мощность. О напряжении в бытовых силовых розетках мы уже говорили.

Для примера возьмем обычный электрический чайник. Мощность у выбранной нами модели составляет около 2000 Ватт (2 кВт), а напряжение в розетке – 230 Вольт (0,23 кВ). Делим 2 кВт на 0,23 кВ и получаем силу тока, которая равняется примерно 9 Амперам. Теперь идем в щиток и смотрим, что у нас на розеточные группы установлен автоматический выключатель на 16 Ампер. Это означает, что чайник мы можем включить без проблем. А если вам необходимо включить второй такой чайник (или любой другой прибор с такой же мощностью), то лучше не делать этого одновременно.

Главный закон электрики

Значение силы тока в бытовых приборах будет увеличиваться пропорционально увеличению мощности, указанной на корпусе устройства. При одном и том же напряжении ток будет больше в том приборе, сопротивление которого меньше. Это можно определить с помощью соответствующих измерений.

Провод небольшой длины обладает относительно малым сопротивлением. Если подключить его к силовой розетке, то значение тока, которое пройдет по нему, будет слишком велико.

Стоит помнить, что сопротивление нагревательных приборов резко возрастает из-за нагревания нити накала.

Если мы говорим об индуктивных нагрузках, то здесь возникает реактивное сопротивление.

Мы рассказали вам о главном законе электричества – законе Ома для участка цепи. Понимание данного принципа поможет вам осознать многие процессы, возникающие в электрике.

Формула закона Ома

Закон Ома устанавливает связь между напряжением, силой тока и сопротивлением в электрической цепи. Формула закона Ома выглядит следующим образом:

  • V – напряжение в электрической цепи, измеряемое в вольтах (В);
  • I – сила тока, протекающего через цепь, измеряемая в амперах (А);
  • R – сопротивление цепи, измеряемое в омах (Ω).

Эта формула позволяет рассчитать одну из величин (напряжение, силу тока или сопротивление), если известны две другие величины.

Например, если известны сила тока и сопротивление, можно использовать формулу для расчета напряжения:

Аналогично, если известны напряжение и сопротивление, можно использовать формулу для расчета силы тока:

И наконец, если известны напряжение и сила тока, можно использовать формулу для расчета сопротивления:

Формула закона Ома является основой для понимания и анализа электрических цепей и позволяет решать различные задачи, связанные с расчетами и проектированием электрических систем.

Сопротивление

Сопротивление – это физическая величина, которая характеризует способность материала препятствовать прохождению электрического тока. Оно обозначается символом R и измеряется в омах (Ω).

Сопротивление зависит от различных факторов, включая материал проводника, его длину, площадь поперечного сечения и температуру. Чем больше сопротивление, тем сложнее для тока протекать через проводник.

Сопротивление можно представить как трение, которое возникает при движении электрического тока через проводник. Чем больше трение, тем больше энергии теряется на преодоление этого сопротивления.

Сопротивление проводника можно рассчитать с использованием закона Ома и формулы:

где R – сопротивление, ρ – удельное сопротивление материала проводника, L – длина проводника, A – площадь поперечного сечения проводника.

Удельное сопротивление материала – это характеристика, которая определяет, насколько сильно материал препятствует прохождению тока. Оно зависит от свойств материала и его температуры.

Сопротивление проводника также может изменяться с изменением температуры. Некоторые материалы имеют положительный температурный коэффициент сопротивления, что означает, что их сопротивление увеличивается с увеличением температуры. Другие материалы имеют отрицательный температурный коэффициент сопротивления, что означает, что их сопротивление уменьшается с увеличением температуры.

Сопротивление является важным понятием в электротехнике, так как оно влияет на эффективность и безопасность электрических систем. Понимание сопротивления позволяет проектировать и анализировать электрические цепи, а также решать различные задачи, связанные с расчетами и выбором проводников и компонентов.

Электротехника для чайников

Начнем пожалуй с понятия электричества. Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. В качестве частиц могут выступать свободные электроны металла, если ток течет по металлическому проводу, или ионы, если ток течет в газе или жидкости.

Есть ещё ток в полупроводниках, но это отдельная тема для разговора. Как пример можно привести высоковольтный трансформатор из микроволновки – сначала электроны бегут по проводам, затем ионы движутся между проводами, соответственно сначала ток идет через металл, а потом через воздух. Вещество называются проводником или полупроводником, если в нём есть частицы, способные переносить электрический заряд. Если таких частиц нет, то такое вещество называется диэлектриком, оно не проводит электричество. Заряженные частицы несут на себе электрический заряд, который измеряется обозначается q в кулонах.

Единица измерения силы тока называется Ампер и обозначается буковой I, ток величиной в 1 Ампер образуется при прохождении через точку электрической цепи заряда величиной 1 Кулон за 1 секунду, то есть грубо говоря сила тока измеряется в кулонах секунду. И по сути сила тока это количество электричества, протекающего за единицу времени через поперечное сечение проводника. Чем больше заряженных частиц бежит по проводу, тем соответственно больше ток.

Чтобы заставить заряженные частицы перемещаться от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Напряжение измеряется в вольтах и обозначается буквой V или U. Чтобы получить напряжение величиной 1 Вольт нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж. Согласен, немного непонятно.

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под действием силы тяжести вытекает через трубу. Пусть вода – это электрический заряд, высота водяного столба – это напряжение, а скорость потока воды – это электрический ток. Точнее не скорость потока, а количество вытекающей за секунду воды. Вы понимаете, что чем выше уровень воды, тем больше будет давление внизу А чем выше давление внизу, тем больше воды вытечет через трубу, потому что скорость будет выше.. Аналогично чем выше напряжение, тем больший ток будет течь в цепи.

Зависимость между всеми тремя рассмотренными величинами в цепи постоянного тока определяет закон ома, который выражается вот такой формулой, и звучит как сила тока в цепи прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению. Чем больше сопротивление, тем меньше ток, и наоборот.

Добавлю ещё пару слов про сопротивление. Его можно измерить, а можно посчитать. Допустим у нас есть проводник, имеющий известную длину и площадь поперечного сечения. Квадратный, круглый, неважно. Разные вещества имеют разное удельное сопротивление, и для нашего воображаемого проводника существует вот такая формула, определяющая зависимость между длиной, площадью поперечного сечения и удельным сопротивлением.

Удельное сопротивление веществ можно найти в интернете в виде таблиц.

Можно опять же провести аналогию с водой: вода течёт по трубе, пусть труба имеет удельную шершавость. Логично предположить, что чем длиннее и уже труба, тем меньше воды будет по ней протекать за единицу времени. Видите, как всё просто? Формулу даже запоминать не нужно, достаточно представить себе трубу с водой.

Что касается измерения сопротивления, то нужен прибор, омметр. В наше время более популярны универсальные приборы – мультиметры, они измеряют и сопротивление, и ток, и напряжение, и ещё кучу всего. Давайте проведём эксперимент. Я возьму отрезок нихромовой проволоки известной длины и площади сечения, найду удельное сопротивление на сайте где я её купил и посчитаю сопротивление. Теперь этот же кусочек измерю при помощи прибора. Для такого маленького сопротивления мне придется вычесть сопротивление щупов моего прибора, которое равно 0.8 Ом. Вот так вот!

Шкала мультиметра разбита по размерам измеряемых величин, это сделано для более высокой точности измерения. Если я хочу измерить резистор с номиналом 100 кОм, я ставлю рукоятку на большее ближайшее сопротивление. В моём случае это 200 килоом. Если хочу измерить 1 килоом, то ставлю на 2 ком. Это справедливо для измерения остальных величин. То есть на шкале отложены пределы измерения, в который нужно попасть.

Давайте продолжим развлекаться с мультиметром и попробуем измерить остальные изученные величины. Возьму несколько разных источников постоянного тока. Пусть это будет блок питания на 12 вольт, юсб порт и трансформатор, который в своей молодости сделал мой дед. Напряжение на этих источниках мы можем измерить прямо сейчас, подключив вольтметр параллельно, то есть непосредственно к плюсу и к минусу источников. С напряжением всё понятно, его можно взять и измерить. А вот чтобы измерить силу тока, нужно создать электрическую цепь, по которой будет протекать ток. В электрической цепи обязательно должен быть потребитель, или нагрузка. Давайте подключим потребитель к каждому источнику. Кусочек светодиодной ленты, моторчик и резистор на (160 ом).

Давайте измерим ток, протекающий в цепях. Для этого переключаю мультиметр в режим измерения силы тока и переключаю щуп во вход для тока. Амперметр подключается в цепь последовательно измеряемому объекту. Вот схема, её тоже следует помнить и не путать с подключением вольтметра. Кстати существует такая штуковина как токовые клещи. Они позволяют измерять силу тока в цепи без подключения непосредственно к цепи. То есть не нужно отсоединять провода, просто накидываешь их на провод и они измеряют. Ну ладно, вернёмся к нашему обычному амперметру.

Итак, я измерил все токи. Теперь мы знаем, какой ток потребляется в каждой цепи. Здесь у нас светятся светодиоды, здесь крутится моторчик а здесь…. Так стоять, а че делает резистор? Он не поёт нам песни, не освещает комнату и не вращает никакой механизм. Так на что он тратит целых 90 миллиампер? Так не пойдёт, давайте разбираться. Слышь ты! Ау, он горячий! Так вот куда расходуется энергия! А можно ли как-то посчитать, что здесь за энергия? Оказывается – можно. Закон, описывающий тепловое действие электрического тока был открыт в 19 веке двумя учеными, Джеймсом Джоулем и Эмилием Ленцем. Закон назвали закон Джоуля-Ленца. Он выражается вот такой формулой, и численно показывает, сколько джоулей энергии выделяется в проводнике, в котором течёт ток, за единицу времени. Из этого закона можно найти мощность, которая выделяется на этом проводнике, мощность обозначается английской буквой Р и измеряется в ваттах.

Таким образом у меня на столе электрическая мощность идёт на освещение, на совершение механической работы и на нагрев окружающего воздуха. Кстати именно на этом принципе работают различные нагреватели, электрочайники, фены, паяльники и прочее. Там везде стоит тоненькая спираль, которая нагревается под действием тока.

Этот момент стоит учитывать при подведении проводов к нагрузке, то есть прокладка проводки к розеткам по квартире тоже входит в это понятие. Если вы возьмете для подведения к розетке слишком тонкий провод и подключите в эту розетку компьютер, чайник и микроволновку, то провод может нагреться вплоть до возникновения пожара. Поэтому есть вот такая табличка, которая связывает площадь поперечного сечения проводов с максимальной мощностью, которая по этим проводам будет идти. Если вздумаете тянуть провода – не забудьте об этом.

Также в рамках этого выпуска хотелось бы напомнить особенности параллельного и последовательного соединения потребителей тока. При последовательном соединении сила тока одинакова на всех потребителях, напряжение разделилось на части, а общее сопротивление потребителей представляет собой сумму всех сопротивлений. При параллельном соединении напряжение на всех потребителях одинаково, сила тока разделилась, а общее сопротивление вычисляется вот по такой формуле.

Из этого вытекает один очень интересный момент, который можно использовать для измерения силы тока. Допустим нужно измерить силу тока в цепи около 2 ампер. Амперметр с этой задачей не справляется, поэтому можно использовать закон ома в чистом виде. Знаем, что сила тока одинакова при последовательном соединении. Возьмём резистор с очень маленьким сопротивлением и вставим его последовательно нагрузке. Измерим на нём напряжение. Теперь, пользуясь законом ома, найдём силу тока. Как видите, она совпадает с расчётом ленты. Здесь главное помнить, что этот добавочный резистор должен быть как можно меньшего сопротивления, чтобы оказывать минимальное влияние на измерения.

Есть ещё один очень важный момент, о котором нужно знать. Все источники имеют максимальный отдаваемый ток, если этот ток превысить – источник может нагреться, выйти из строя, а в худшем случае ещё и загореться. Самый благоприятный исход это когда источник имеет защиту от перегрузки по току, в таком случае он просто отключит ток. Как мы помним из закона ома, чем меньше сопротивление, тем выше ток. То есть если взять в качестве нагрузки кусок провода, то есть замкнуть источник самого на себя, то сила тока в цепи подскочит до огромных значений, это называется короткое замыкание. Если вы помните начало выпуска, то можете провести аналогию с водой. Если подставить нулевое сопротивление в закон ома то мы получим бесконечно большой ток. На практике такое конечно не происходит, потому что источник имеет внутреннее сопротивление, которое подключено последовательно. Этот закон называется закон ома для полной цепи. Таким образом ток короткого замыкания зависит от величины внутреннего сопротивления источника.

Сейчас давайте вернёмся к максимальному току, который может выдать источник. Как я уже говорил, силу тока в цепи определяет нагрузка. Многие писали мне вк и задавали примерно вот такой вопрос, я его слегка утрирую: Саня, у меня есть блок питания на 12 вольт и 50 ампер. Если я подключу к нему маленький кусочек светодиодной ленты, она не сгорит? Нет, конечно же она не сгорит. 50 ампер – это максимальный ток, который способен выдать источник. Если ты подключишь к нему кусочек ленты, она возьмёт свои ну допустим 100 миллиампер, и все. Ток в цепи будет равен 100 миллиампер, и никто никуда не будет гореть. Другое дело, если возьмёшь километр светодиодной ленты и подключишь его к этому блоку питания, то ток там будет выше допустимого, и блок питания скорее всего перегреется и выйдет из строя. Запомните, именно потребитель определяет величину тока в цепи. Этот блок может выдать максимум 2 ампера, и когда я закорачиваю его на болтик, с болтиком ничего не происходит. А вот блоку питания это не нравится, он работает в экстремальных условиях. А вот если взять источник, способный выдать десятки ампер, такая ситуация не понравится уже болтику.

Давайте для примера произведём расчёт блока питания, который потребуется для питания известного отрезка светодиодной ленты. Итак, закупили мы у китайцев катушку светодиодной ленты и хотим запитать три метра этой самой ленты. Для начала идём на страницу товара и пытаемся найти, сколько ватт потребляет один метр ленты. Эту информацию я найти не смог, поэтому есть вот такая табличка. Смотрим, что у нас за лента. Диоды 5050, 60 штук на метр. И видим, что мощность составляет 14 ватт на метр. Я хочу 3 метра, значит мощность будет 42 ватта. Блок питания желательно брать с запасом на 30% по мощности, чтобы он не работал в критическом режиме. В итоге получаем 55 ватт. Ближайший подходящий блок питания будет на 60 ватт. Из формулы мощности выражаем силу тока и находим её, зная, что светодиоды работают при напряжении 12 вольт. Выходит, нам нужен блок с током 5 ампер. Заходим, например, на али, находим, покупаем.

Очень важно знать потребляемый ток при изготовлении всяких USB самоделок. Максимальный ток, который можно взять от USB, составляет 500 миллиампер, и его лучше не превышать.

И напоследок коротенько о технике безопасности. Здесь вы можете видеть, до каких значений электричество считается неопасным для жизни человека.

Суть электрического сопротивления, что такое сопротивление электрического тока, его природа.

Что такое электрическое сопротивление, его суть. Сопротивление тока.

Многие слышали о таком понятии, встречаемом и широко используемом в сфере электричества, как электрическое сопротивление. Но не все знают, какова же природа его. В чём заключается суть, и что вообще оно собой представляет, от чего зависит. Предлагаю в этой статье разобраться, что же такое сопротивление тока. И так, под электрическим сопротивлением подразумевают две вещи. В одном понимании это физическая величина, в другом же, это электрический компонент, деталь, элемент.

Теперь про то, в чём именно заключается суть сопротивления тока. А начнём мы с основы, строения атома, его кристаллической решетки, и движения электричества внутри электрического проводника. Напомню, что атом является мельчайшей частицей вещества. Он устроен следующим образом: в центре находится так называемое ядро, состоящее из более мелких частиц, протонов и нейтронов. Вокруг этого атомного ядра с огромной скоростью вращаются еще одни частицы, называемые электронами (по размерам они гораздо меньше ядра).

суть атома вещества, его строение, электрический ток, сопротивление

Ядро атома имеет положительный электрический заряд (плюс), а электроны, соответственно, отрицательный заряд (минус). Любое вещество представлено множеством атомов, которые имеют свою определенную структурированность, именуемая таким понятием как кристаллическая решётка (если говорить о твердом состоянии вещества). Но перед тем как перейти к сути сопротивления тока стоит ещё добавить, что то пространство, по которому носятся электроны называется орбитой электрона (орбиталями). У разных веществ количество орбит может быть разным, и располагаются они одна выше другой (как луковица).

На самой отдалённой электронной орбите сила притяжения электрона к ядру атома минимально, что способствует легкому отрыву электрона от неё и перехода его к соседнему атому. В этом заключается суть движения электрических зарядов внутри вещества (проводника тока).

Когда мы подключаем к проводнику источник тока, прилаживая к его концам определенную разность потенциалов (электрическое напряжение), мы заставляем электроны упорядоченно двигаться с одного полюса источника энергии к другому. Возникает электрический ток зарядов внутри проводника, его кристаллической решетки.

движение электронов в металлах, электрический ток в проводнике

А теперь уж можно перейти к вопросу о электрическом сопротивлении тока, его сути. И так, при прохождении электрических зарядов внутри проводника электроном не приходится двигаться по прямой траектории, их движения скорей напоминает перескоки с одного атома на другой. Естественно, что при таком движении будет расходоваться некоторая энергия (на преодоление препятствий). Кроме этого стоит учесть, что атомы не стоят на месте, они имеют свое внутреннее хаотическое движение внутри кристаллической решетки вещества. А чем больше это движение (зависящие также от температуры, чем она выше, тем движение атомов интенсивнее), тем большее препятствие возникает перед перемещением зарядов. Именно это препятствие движению тока и называется электрическим сопротивлением.

Также существует такое понятие как сверхпроводимость. Это когда электрическое сопротивление тока приравнивается к нулю. Электрический ток бежит по проводнику без потерь. Так сказать идеальный проводник. Этого эффекта можно достичь если определённые вещества довести до температуры абсолютного нуля (273 градуса по Цельсию). А как известно из физики, при сверхнизких температурах движения атома внутри кристаллической решетки вещества практически прекращается. На пути движения электронов, электрического тока заряженных частиц нет препятствий, что и дает эффект сверхпроводимости.

Электрическое сопротивление зависит от таких фундаментальных электрических величин как сила тока и напряжение. Все эти три электрические характеристики объединены общим законом, который называется закон Ома (сила тока равна напряжение деленное на сопротивление). Зависимость этой троицы следующая: чем больше сопротивление электрической цепи, тем меньше будет сила тока, при равном напряжении питания. Чем больше напряжение мы прилаживаем к цепи, тем больше сила тока будет протекать, при равном сопротивлении цепи. То есть, чем больше сопротивление, тем меньше сила тока, и наоборот. У сопротивления тока имеется своя единица измерения, это Ом (1 килоом равен 1000 ом). 1 Ом равен 1 Вольт поделить на 1 Ампер.

как течёт движется ток в проводнике, напряжение ток и сопротивление цепи

Это мы разобрали суть электрического сопротивления тока, как физической величины. Но очень часто говоря о сопротивлении подразумевается конкретная материальная вещь, деталь, функциональный элемент. То есть, обычный электрический резистор называют сопротивлением, поскольку прямое назначение этой детали заключается именно в образовании электрического сопротивления в определенной части цепи. Электрическое сопротивление тока ещё бывает активным и реактивным. Активное сопротивление существует у всех резистивных элементах (проводники имеющие нагревательную способность). Реактивным сопротивлением обладают различные катушки и емкости. Но про это уже в другой теме.

P.S. У новичка может возникнуть такой закономерный вопрос. Зачем нужно специально ставить сопротивление в электрическую цепь, ведь его суть заключается в препятствии движению тока? Нужно, даже необходимо, Так же, как и наличие у машины тормозов. Когда возникает необходимость снижению скорости или остановки без тормозов просто не обойтись. Примерно также, и в сфере электрики, электроники. В некоторых местах электрической цепи нужно наличие именно меньшего напряжения и тока, чем на входе источника питания, что и делает резистор (сопротивление).

Оцените статью
TutShema
Добавить комментарий