Частотный преобразователь 220 в выход 3 фазы своими руками

Всем здравствуйте. Вот решил написать статейку про асинхронный привод и преобразователь частоты, который я изготавливал. Моему товарищу надо было крутить пилораму, и крутить хорошо. А сам я занимался импульсной электроникой и сразу предложил ему частотник. Да, можно было купить фирмовый преобразователь, и мне приходилось с ними сталкиваться, параметрировать, но захотелось своего, САМОДЕЛАШНОГО! Да и привод циркулярки к качеству регулирования скорости не критичен, только вот к ударным нагрузкам и к работе в перегрузе должен быть готов. Также максимально-простое управление с помощью пары кнопок и никаких там параметров.

Основные достоинства частотнорегулируемого привода (может для кого-то повторюсь):

Формируем из одной фазы 220В полноценные 3 фазы 220В со сдвигом 120 град., и имеем полный вращающий момент и мощность на валу.

Увеличенный пусковой момент и плавный пуск без большого пускового тока

Отсутствует замагничивание и лишний нагрев двигателя, как при использовании конденсаторов.

Возможность легко регулировать скорость и направление, если необходимо.

Вот какая схемка собралась:

3-фазный мост на IGBT транзисторах c обратными диодами (использовал имеющиеся G4PH50UD) управляется через оптодрайвера HCPL 3120 (бутстрепная схема запитки) микроконтроллером PIC16F628A. На входе гасящий конденсатор для плавного заряда электролитов DC звена. Затем его шунтирует реле и на микроконтроллер одновременно приходит логический уровень готовности. Также имеется триггер токовой защиты от к.з. и сильной перегрузки двигателя. Управление осуществляют 2 кнопки и тумблер изменения направления вращения.

Силовая часть мною была собрана навесным монтажом. Плата контроллера отутюжина вот в таком виде:

Параллельные резисторы по 270к на проходных затворных конденсаторах (забыл под них места нарисовать) припаял сзади платы, потом хотел заменить на смд но так и оставил.

Есть внешний вид этой платы, когда уже спаивал:

С другой стороны

Для питания управления был собран типовой импульсный обратноходовой (FLAYBACK) блок питания.

Можно использовать любой блок питания на 24В, но стабилизированный и с запаздыванием пропадания выходного напряжения от момента пропажи сетевого на пару тройку секунд. Это необходимо чтобы привод успел отключиться по ошибке DC. Добивался установкой электролита С1 большей ёмкости.

Теперь о самом главном. о програме микроконтроллера. Программирование простых моргалок для меня сложности не представляло, но тут надо было поднатужить мозги. Порыскав в нете, я не нашёл на то время подходящей информации. Мне предлагали поставить и специализированные контроллеры, например контроллер фирмы MOTOROLA MC3PHAC. Но хотелось, повторюсь, своего. Принялся детально разбираться с ШИМ модуляцией, как и когда нужно открыть какой транзистор. Открылись некие закономерности и вышел шаблон самой простой программы отработки задержек, с помощью которой можно выдать удовлетворительно синусовую ШИМ и регулировать напряжение. Считать ничего контроллер конечно не успевал, прерывания не давали что надо и поэтому я идею крутого обсчёта ШИМ на PIC16F628A сразу отбросил. В итоге получилась матрица констант, которую отрабатывал контроллер. Они задавали и частоту и напряжение. Возился честно скажу, долго. Пилорама уже во всю пилила конденсаторами, когда вышла первая версия прошивки. Проверял всю схему сначала на 180 ватном движке вентиляторе. Вот как выглядела «экспериментальная установка»:

Как переделать преобразователь частоты на 380 В. под задачу вход 220 В., выход ТРИ фазы 380 В.

Первые эксперименты показали, что у этого проекта точно есть будущее.

Программа дорабатывалась и в итоге после раскрутки 4кВТ-ного движка её можно было собирать и идти на лесопилку.

Товарищ был приятно удивлён, хоть и с самого начала относился скептически. Я тоже был удивлён, т.к. проверилась защита от к.з. (случайно произошло в борно двигателя). Всё осталось живо. Двигатель на 1,5кВт 1440об/мин легко грыз брусы диском на 300мм. Шкивы один к одному. При ударах и сучках свет слегка пригасал, но двигатель не останавливался. Ещё пришлось сильно подтягивать ремень, т.к. скользил при сильной нагрузке. Потом поставили двойную передачу.

Сейчас ещё дорабатываю программу она станет еще лучше, алгоритм работы шим чуть сложнее, режимов больше, возможность раскручиваться выше номинала. а тут снизу та самая простая версия которая работает на пиле уже около года.

Выходная Частота: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ синхронная, изменяющаяся. Диапазон примерно 1700-3300Гц.; Скалярный режим управления U/F, мощность двигателя до 4кВт.

Минимальная рабочая частота после однократного нажатия на кнопку ПУСК(RUN) — 10Гц.

При удержании кнопки RUN происходит разгон, при отпускании частота остаётся та, до которой успел разогнаться. Максимальная 50Гц- сигнализируется светодиодом. Время разгона около 2с.

Светодиод «готовность» сигнализирует о готовности к запуску привода.

Реверс опрашивается в состоянии готовности.

Режимов торможения и регулирования частоты вниз нет, но они в данном случае и не нужны.

При нажатии Стоп или СБРОС происходит остановка выбегом.

На этом пока всё. Спасибо, кто дочитал до конца.

Про народный частотник

Преобразователь частоты (ЧП в дальнейшем) 750 Вт. для подключения трехфазных двигателей мощностью до ~500вт. Покупал на всем известном узкопленочном сайте, Частотник продается без корпуса. Купил сперва один, потом докупил еще один. Своих денег он стоит. Описания и адекватной инструкции на него в сети нет, все переведено с китайского и перевод оставляет желать лучшего. Китайцы конечно в своем стиле и инструкция была на китайском ))) гугл переводчик и разрозненные видео дали понимание как его настроить. В инструкции например нет пункта Р91, а в нем можно выставить реальную частоту вращения двигателя или пункт Р01 есть настройка 3 которая позволяет включать устройство не только с внешних клавиш, но и с устройства, правда в только зеленой клавишей.

импортозамещение на Рутуб:

на буржуйском Ютубе:

Р00 управление частотой(оборотами двигателя)
0 — управление частотой стрелками, шаг в программе Р65
1 — управление частотой, резистор на устройстве, мин. и макс. в программе Р27 Р26
2 — управление частотой, резистор на устройстве, мин. и макс. в программе Р45 Р26
3 — управление частотой, внешний потенциометр, мин. и макс. в программе Р27 Р26
4 — управление частотой, внешний потенциометр, мин. и макс. в программе Р45 Р26

Р01 — управление кнопками
0- с устройства
1- внешние кнопки
2- RS485
3- внешнее + кнопка FWD

Р02 — торможение
0 — свободное торможение
1 — торможение устройством(Р09-Р10)

Р03 и Р26 — частота выхода
1-400гц

Р04 — напряжение выхода
220
380

Р09 и Р10 — выбор времени разгона и торможения
3сек

Р20 — запрет реверса
0- запрет
1 — реверс

Р21 несущая частота
8гц

Р22 — уровень тока торможения
я поставил 5.0

Р23 время задержки старта, в сек
0.1

Р26 частота, максимальная
50гц

Р27 нижний предел частоты
я выставил себе 5гц

Р28 — Р32 управление внешними клавишами подсоединенными к разъему расширения функционала

Р40 защита от старта двигателя при включении устройства
(на одном ЧП работает, на другом почему то не работает, видимо где-то еще что-то должно быть включено)
0-
1-

Р42 — блокировка программирования устройства
0- чтение/запись
1- чтение

Р43 — нижняя частота
5Гц

Р52 — номинальный ток электродвигателя
Р53 -ток холостого хода
Р54 — коэф компенсации

Р65 — шаг регулирования частоты, клавишами

Р67 — сброс в заводские настройки
8

Р84 — выбор типа двигателя
0 — три фазы

Р91 — выставляем обороты принудительно
по умолчанию стоит 1500

Преобразователь однофазного напряжения 220В в трехфазное

Преобразователь однофазного напряжения в трехфазное разработан на основе схемы регулятора мощности, приведенной в [1], и предназначен для питания трехфазного электродвигателя.

Схема регулятора подключается к сети через автоматический выключатель SF1, обеспечивающий номинальный потребляемый ток. После включения в сеть регистр сдвига DD2 сбрасывается в ноль на время заряда конденсатора С2 через резистор R5. После заряда С2 до напряжения срабатывания элемента DD1.1 разрешается сдвиг в регистре DD2.

При установке выхода регистра в состояние логической «1» открывается подключенный к нему транзистор (VT1. VT6), который коммутирует соответствующий тиристор. Временная диаграмма работы (последовательности коммутации тиристоров) приведена на рисунке 2.

схема преобразователя напряжения из однофазного в трехфазное

Рис. 1. Принципиальная схема преобразователя напряжения из однофазного 220В в трехфазное.

Диаграмма работы - последовательности коммутации тиристоров

Рис. 2. Временная диаграмма работы (последовательности коммутации тиристоров).

Детали и настройка

Конденсаторы С4. С6 — коммутационные (запирающие) емкости. Их величины даны ориентировочно. Они подбираются во время настройки схемы в зависимости от мощности двигателя и частоты коммутации тиристоров. Величину емкости можно рассчитать по приближенной формуле:

C = (0,01 * Р(Вт) / n) * (1 / 30n) (мкФ),

где: n=1 при номинальной частоте двигателя.

После настройки схемы R3 и R4 выпаивают, на место R4 впаивают конденсатор емкостью 0,68 мкФ. Между точками А и В впаивают подстроечный резистор сопротивлением 15 кОм, которым точно устанавливают частоту вращения электродвигателя.

В. Соломыков, РЛ-1-2000.

Литература: 1. Р-1987-12.

Конструкция ЧП

Поскольку ЧП встраиваемый, то он не нуждается в специальном корпусе. Поэтому был изготовлен простой кожух из листовой стали с креплением двух вентиляторов. Была цель максимально упростить сборку и разборку ЧП. Пилотная версия нашего ЧП в свое время размещалась на одной плате. В этой версии стало три платы. Таким образом ЧП получился более компактным. А его модульность позволяет удешевить модификации функциональности и проще выполнять изменения в компонентной базе.

ЧП состоит из трех основных плат:

  • Управляющая плата с микроконтроллером и внешними интерфейсами.
  • Плата DC шины, на которой расположен блок питания и блок конденсаторов
  • Силовая плата, на которой расположен IGBT модуль, силовые входы и выходы, измерители тока, EMI фильтр.

Компоненты ЧП

Управляющая плата

На управляющей плате находится микроконтроллер и гальвано изолированные внешние интерфейсы:

  • интерфейс для подключения внешнего квадратурного энкодера
  • интерфейс RS232
  • интерфейс CAN
  • интерфейс USB
  • три дискретных выхода и один дискретный вход Управляющая плата соединяется с силовой платой двумя плоскими шлейфами через разъемы X7 и X8. Через X7 проходят сигналы управления затворами IGBT модуля. Через X8 проходят сигналы измерения тока и напряжения, линии I2C и несколько других сигналов. Похожая схема применяется в Goodrive20-EU.

Лист 1 схемы управляющей платыЛист 2 схемы управляющей платы

Кроме того, на управляющей плате находится литиевый аккумулятор для поддержания энергонезависимой работы часов реального времени, держатель для uSD карты и зуммер. Это не обязательные компоненты, но полезные на этапе разработки, отладки и диагностики ПО.

Плата DC шины

DC шина находится под напряжением 310. 340 В и через нее проходит средний ток до 10А на максимальной мощности. На плате размещен блок питания в виде отдельного модуля. Так решено было сделать питание просто ради упрощения дизайна платы. На плате находится транзисторный ключ Q3 управляющий вентиляторами. Вентиляторы включаются только при достижении IGBT модулем определенной заданной температуры.

Силовая плата

Главным элементом всего устройства является IGBT модуль.

IGBT модуль

В нашем случае использован модуль FSBB30CH60C. Модуль порадовал своей исключительной надежностью. В течении разработки не сгорел ни один модуль. Некоторое время назад это был самый доступный и недорогой модуль. Модуль управляется напрямую логическими сигналами и имеет встроенные защиты от недонапряжения и короткого замыкания.

Плата термосенсора

Немного усложняет дело отсутствие температурного сенсора, встроенного в модуль. Термосенсор пришлось сделать отдельно на микросхеме MAX31725MTA+ на своей маленькой плате и разместить под корпусом IGBT модуля. Проект термосенсора находится в директории TempSensor. Термосенсор соединен с микроконтроллером интерфейсом I2C.

Измерение токов на трех выходах IGBT модуля сделано иначе чем в обычных ЧП. Вместо шунтов поставлены гальвано изолированные датчики Холла ACS759LCB-050B-PFF-T. Это более дорогое решение, но позволяющее более креативно подойти к выбору способов модуляции и упростить трассировку. Традиционные шунты в нижних плечах силовых транзисторов ограничивают возможные типы модуляций. Это не проблема в промышленных ЧП, но наш сделан еще и в экспериментальных целях и мог бы быть применен не только с асинхронными двигателями, но и с синхронными, и с более экзотическими.

Схема силовой платы

Программное обеспечение

Фирмаваре ЧП состоит из двух частей: начального загрузчика и основного приложения.

Начальный загрузчик находится в директории Firmware/Inverter_bootloader и позволяет загружать основное приложение через CAN и через интерфейс RS232. Бинарный образ приложения создается утилитой BIB. Утилита находится в директории Firmware/Loader.
Помимо прочего образ может быть утилитой зашифрован. Загрузчик умеет расшифровывать образы.

Сам проект рабочего приложения находится в директории Firmware/Inverter_firmware. Компилируются проекты в среде EWARM, версии не выше 670.3

Представленное программное обеспечение расчитано на очень простое подключение ЧП.

Схема подключения ЧП

ЧП управляется по шине CAN в режиме скалярного управления.

Почему скалярного? Скалярное управление несмотря на все недостатки при этом характеризуется более низким уровнем шума издаваемым мотором, по крайней мере, когда имеем дело с ЧП, описанными выше и безсенсорным управлением. При стабильной нагрузке и номинальной скорости двигателя в основном рабочем цикле скалярное управление хорошо себя показывает.

Принято считать («Practical Variable Speed Drives and Power Electronics», Malcolm Barnes 2003 ) что безсенсорное скалярное управление обеспечивает точность скорости в 1% и время отклика момента 100 мс, а векторное безсенсорное соответственно 0.5% и 10 мс.

Результаты качества потребления энергии частотным преобразователем на разных мощностях при частоте модуляции 16 КГц:

Используемы в таблице обозначения:

  • V(V) – текущее действующее входное напряжение однофазной сети в вольтах
  • THD V(%) – total harmonic distortion, Коэффициент нелинейных искажений по напряжению
  • I(A) – действующее значение тока в амперах
  • THD I(%) – total harmonic distortion, Коэффициент нелинейных искажений по току
  • I peak (A) – пиковое значение тока в амперах
  • CF I (A) – Коэффициент амплитуды сигнала (крест-фактор) в амперах
  • |P| (W) – Активная потребляемая мощность в ваттах
  • Q (Var) – Реактивная потребляемая мощность. Единица измерения – вар
  • S (VA) – Полная потребляемая мощность. Единица измерения ВА
  • PF — Коэффициент мощности
  • COS PHI – косинус фи

Несколько слов о безопасности

Сначала о сохранности самого преобразователя. Всегда надо помнить о такой вещи как реформинг. Может случиться так что высоковольтные электролитические конденсаторы, установленные в ЧП где-то долго хранились, или сам ЧП не был подключен в сеть более года. В таком случае у конденсаторов истончается диэлектрический слой, и они могут не выдержать быстрой подачи на них полного номинального напряжения и рабочего тока. Тогда требуется реформинг или, иными словами, осторожное постепенное включение.

Защита от возгорания. Она организуется несколькими способами. Сами печатные платы должны быть изготовлены по соответствующей технологии и иметь UL маркировку. Далее необходимо обеспечить ширину силовых проводников на плате, исключающую их возгорание раньше, чем произойдёт выключение внешних силовых расцепителей.

Так выглядит полная эталонная схема обвеса частотного преобразователя не снабженного KKM (без отображения цепей безопасности)

Электробезопасность. Корпус ЧП обязательно должен заземляться. Варисторы на входе ЧП обеспечивают защиту от кратковременных перенапряжений, но при длительных перенапряжениях они сгорают, оставляя толстый слой проводящей сажи.
Тут в действие вступает заземление. Однако ставить чувствительные реле утечки на частотные преобразователи не рекомендуется, поскольку емкость мотора относительно земли настолько существенна, что может вызвать утечку большую чем уровень срабатывания реле. Поэтому заземление должно быть максимально надежным. Стоит также помнить, что заземление само по себе не обеспечивает защиту от электромагнитных помех, излучаемых самой цепью заземления. Поэтому все информационные кабели если они лежат рядом с цепью заземления или заземляющими конструкциями должны иметь свои экраны подключённые к собственным локальным землям. И такие экраны не должны образовывать замкнутых контуров.

Так выглядит лучшая организаци подключения

Эксплуатационная безопасность. На роботизированных объекта, станках, агрегатах, подъемниках, кранах, эскалаторах — везде есть средства экстренной остановки в виде концевиков, датчиков, микровыключателей и проч. Чтобы люди сами могли активизировать экстренную остановку устанавливаются большие заметные красные кнопки. Все эти средства объединяются в электрическую цепь безопасности. Конечной точкой этой цепи являются контакторы, реле или иные ресцепители, обрывающие подачу тока на электродвигатели. На частотных преобразователях в роли расцепителя выступает узел STO (safe torque off) упомянутый выше. Обычно есть два дублирующихся входа STO, но в нашем ЧП есть только один. Это означает что для реализации дублирования средства безопасности дополнительно необходим внешний контактор, разрывающий цепь питания к ЧП при разрыве цепи безопасности. Так требуют стандарты.

В результате у нас получился вот такой ЧП

Для тех же кто заинтересовался проектом в директории JTAG_isolator лежит проект платы изолятора JTAG интерфейса. Очень трудно отлаживать электронику подключенную в сеть без хороших изоляторов.

К сожалению, формат короткой статьи для хабра не позволяет описать все перипетии разработки, алгоритмы, архитектуру софта и прочие подробности. Поэтому заранее прошу понимания читателей если тема не раскрыта в желаемом объёме.
Ещё есть время.

Все материалы по проекту частотного преобразователя лежат и накапливаются тут — https://github.com/Indemsys/Frequency_Inverter

  • частотный преобразователь
  • инвертер
  • управление двигателями

Схемы любительских частотных преобразователей

Схемы любительских частотных преобразователей

Одна из первых схем преобразователя для питания трехфазного двигателя была опубликована в журнале «Радио» №11 1999г. Разработчик схемы М. Мухин в то время был учеником 10 класса и занимался в радиокружке.

Преобразователь предназначался для питания миниатюрного трехфазного двигателя ДИД-5ТА, который использовался в станке для сверления печатных плат. При этом следует отметить, что рабочая частота этого двигателя 400Гц, а напряжение питания 27В. Кроме того, средняя точка двигателя (при соединении обмоток «звездой») выведена наружу, что позволило предельно упростить схему: понадобилось всего три выходных сигнала, а на каждую фазу потребовался всего один выходной ключ. Схема генератора показана на рисунке 1.

Как видно из схемы преобразователь состоит из трех частей: генератора-формирователя импульсов трехфазной последовательности на микросхемах DD1…DD3, трех ключей на составных транзисторах (VT1…VT6) и собственно электродвигателя M1.

На рисунке 2 показаны временные диаграммы импульсов, сформированных генератором-формирователем. Задающий генератор выполнен на микросхеме DD1. С помощью резистора R2 можно установить требуемую частоту вращения двигателя, а также изменять ее в некоторых пределах. Более подробную информацию о схеме можно узнать в указанном выше журнале. Следует отметить, что по современной терминологии подобные генераторы-формирователи называются контроллерами.

Схемы любительских частотных преобразователей

Рисунок 2. Временные диаграммы импульсов генератора.

На базе рассмотренного контроллера А. Дубровским из г. Новополоцка Витебской обл. была разработана конструкция частотно-регулируемого привода для двигателя с питанием от сети переменного тока напряжением 220В. Схема устройства была опубликована в журнале «Радио» 2001г. №4.

В этой схеме, практически без изменений, используется только что рассмотренный контроллер по схеме М. Мухина. Выходные сигналы с элементов DD3.2, DD3.3 и DD3.4 используются для управления выходными ключами A1, A2, и A3, к которым подключается электродвигатель. На схеме полностью показан ключ A1, остальные идентичны. Полностью схема устройства показана на рисунке 3.

Схемы любительских частотных преобразователей

Подключение двигателя к выходу трехфазного инвертора

Для ознакомления с подключением двигателя к выходным ключам стоит рассмотреть упрощенную схему, приведенную на рисунке 4.

Подключение двигателя к выходу трехфазного инвертора

На рисунке показан электродвигатель M, управляемый ключами V1…V6. Полупроводниковые элементы для упрощения схемы показаны в виде механических контактов. Питание электродвигателя осуществляется постоянным напряжением Ud получаемым от выпрямителя (на рисунке не показан). При этом, ключи V1, V3, V5 называются верхними, а ключи V2, V4, V6 нижними.

Совершенно очевидно, что открытие одновременно верхних и нижних ключей, а именно парами V1V6, V5Источники»]

  • https://www.radiokot.ru/circuit/digital/security/31/
  • https://www.drive2.ru/c/656013168425843760/
  • https://radiostorage.net/639-preobrazovatel-odnofaznogo-napryazheniya-220v-v-trekhfaznoe.html
  • https://habr.com/ru/articles/597757/
  • https://electrik.info/main/praktika/545-shemy-lyubitelskih-chastotnyh-preobrazovateley.html
  • https://cxem.net/promelectr/promelectr48.php
  • https://220v.guru/elementy-elektriki/dvigateli/chastotnik-dlya-trehfaznogo-elektrodvigatelya-svoimi-rukami.html
  • https://radioskot.ru/publ/3_faznyj_invertor_ot_220_v/1-1-0-1563

[/spoiler]

Оцените статью
TutShema
Добавить комментарий