Амперметр это в физике

Для большинства людей электрический ток — это что-то из категории магии вне Хогвартса. На самом деле, это всего лишь упорядоченность природных явлений и больше ничего. Давайте переходить в категорию разбирающегося меньшинства.

· Обновлено 31 января 2024

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У зеленого напор сильнее, у желтого — слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

Амперметр

Амперметр — это прибор для измерения силы тока в электрической цепи.

По принципу работы и внешнему виду амперметр очень похож на гальванометр. Его устройство изменено, чтобы можно было не просто фиксировать наличие тока в цепи, но и измерять его силу.

В каких единицах градуируют шкалу амперметра? Так как он измеряет силу тока, то и его шкала будет проградуирована в амперах.

Различные виды амперметров могут отличаться друг от друга в зависимости от сферы использования. На рисунке 1, а изображен демонстрационный амперметр. Такие приборы чаще всего используют в школе при демонстрации опытов.

На рисунке 1, б представлен амперметр, который чаще используют для лабораторных работ.

Как вы видите, эти два амперметра рассчитаны на измерение определенного диапазона значений силы тока. Шкала первого амперметра покажет максимальное значение в $3 space А$, а второго — в $2 space А$. Превышать эти значения не рекомендуется, так как приборы могут выйти из строя.

Амперметр в электрической цепи

Амперметр — измерительный прибор. Поэтому, когда мы подключаем его к электрической цепи, он не будет влиять на величину силы тока. Он будет лишь показывать ее значение.

Вольтметр и амперметр (видео 11) | Введение в электрические цепи | Электротехника

На схемах электрических цепей амперметр обозначается специальным условным знаком — кружочком с буквой “А” (рисунок 2).

Амперметр

Амперметр

Амперме́тр (от ампер и . метр ), прибор для измерения силы постоянного и/или переменного тока. В электрическую цепь включается последовательно, поэтому должен иметь минимально возможное внутреннее сопротивление , чтобы не оказывать заметного влияния на измеряемую силу тока. Шкалу амперметра градуируют в кратных и дольных единицах ампера в соответствии с пределами измерения прибора. Для расширения пределов измерения параллельно амперметру включают шунт. В цепях переменного тока, наряду с шунтами, применяют измерительные трансформаторы . Различают аналоговые и цифровые амперметры. Среди аналоговых наибольшее распространение получили магнитоэлектрические амперметры, в которых используется эффект взаимодействия магнитных полей постоянного магнита и измеряемого тока, протекающего по подвижной катушке (рамке). Магнитоэлектрические амперметры предназначены для измерения силы постоянного тока; результаты измерений определяют по положению стрелки (или иного указателя) на шкале отсчётного устройства.

Основу цифровых амперметров, применяемых в цепях как постоянного, так и переменного тока, составляет измерительный преобразователь . В таких амперметрах измеряется напряжение на встроенной мере – прецизионном низкоомном резисторе , также последовательно включённом в измеряемую цепь. Преимущества цифровых амперметров – минимальное влияние вибраций , удобная индикация (результаты измерений отображаются в виде чисел на цифровом табло), автоматический выбор полярности и поддиапазонов измерений, возможность работы в составе информационно-измерительных систем . Особая разновидность амперметров – фотоамперметры, предназначенные для измерения токов высокой частоты (до десятков килогерц); их действие основано на сравнении яркости свечения двух специальных ламп накаливания , одна из которых нагревается измеряемым током, а другая – постоянным.

Опубликовано 1 декабря 2022 г. в 19:27 (GMT+3). Последнее обновление 3 февраля 2023 г. в 11:47 (GMT+3). Связаться с редакцией

Информация

Амперметр

Области знаний: Техника, Электроэнергетика

Шунтирование амперметра

Величина измерения силы тока, которая требуется в различных ситуациях, колеблется от долей микроампера до десятков и даже сотен килоампер.

Измерительная головка, как правило, изготавливается так, чтобы измерять минимально возможный ток. Ток полного её отклонения равен десяткам микроампер. Для измерения больших токов в амперметр практически всегда вводится добавочный элемент, называемый шунтом.

Шунт — это компонент электрической цепи, который позволяет току проходить в обход некоторых других элементов в цепи. Обычно это резистор с малым сопротивлением.

Если шунт присоединить параллельно амперметру, то часть тока, проходящего по данному участку цепи — будет по-прежнему двигаться через амперметр, а часть тока — пойдёт через шунт. Соотношение токов через амперметр и через шунт будет равно соотношению сопротивлений шунта и амперметра:

  • $R_ш$ — сопротивление шунта;
  • $R_А$ — сопротивление амперметра;
  • $I_А$ — ток через амперметр;
  • $I_ ш$ — ток через шунт;
  • $ I_$ — общий измеряемый ток (сумма токов через шунт и амперметр).

Из данной формулы можно получить значение тока через амперметр, снабжённый шунтом:

То есть если сопротивление амперметра и шунта равны, то ток, идущий через амперметр, будет вдвое меньше общего тока.

Как правило, в реальных условиях сопротивление шунта берётся значительно меньше сопротивления измерительного прибора. Например, если сопротивление амперметра составляет 100 Ом, а сопротивление шунта — 0,1 Ома, то общий ток, измеряемый амперметром с шунтом, будет в 1000 раз больше, чем ток, идущий через амперметр. Иначе говоря, если такой амперметр покажет ток 100 мкА, это будет означать, что общий ток в цепи составляет 0,1 А.

Шунт для амперметра

Подключение

Далее рассмотрим 2 варианта замера силы тока: для цепи с переменным и постоянным напряжением. Перед тем как подключить измерительное устройство, нужно вспомнить, что любой амперметр имеет очень низкое собственное сопротивление. Измерять силу тока без нагрузки со стороны стороннего элемента нельзя. Это особенно важно при работе с переменным напряжением. Все инструкции будут даны на примере цифрового мультиметра в режиме замера силы тока.

Переменный ток

Для того чтобы замерить силу переменного тока необходимо:

  1. Перевести переключатель мультиметра в режим замера силы переменного тока.
  2. Выбрать наибольшую величину.
  3. Красный измерительный щуп подключить в гнездо «10–20 А», в зависимости от типа прибора.
  4. Черный щуп вставить в гнездо «COM».
  5. К трансформатору подключить провод питания (запрещено включать в розетку).
  6. К клемме «+» от трансформатора подключить один контакт контрольной лампы.
  7. Второй контакт от лампы соединить с красным измерительным щупом тестера.
  8. Черный измерительный щуп соединить со второй клеммой трансформатора.
  9. Подать на трансформатор напряжение.

Проверка переменного тока

Амперметр покажет значение потребления контрольной лампой в амперах. Подключать измерительные щупы без лампы строго запрещено.

Переменный ток также можно измерить при помощи токоизмерительных клещей. Для этого необходимо:

  1. Вынуть из гнезд контрольные щупы.
  2. Перевести тестер в режим замера силы тока.
  3. Обхватить клещами жилу провода.

Проверка измерительными клещами

Амперметр выдаст значение потребления.

Постоянный ток

Для замера постоянного тока также используется параллельное подключение тестера. Далее необходимо:

  1. Перевести прибор в режим замера силы постоянного напряжения.
  2. Красный измерительный щуп вставить в гнездо «mA».
  3. Черный оставить в гнезде «COM».
  4. Выбрать наибольший параметр замера в миллиамперах.
  5. Вход «минус» измеряемого прибора подключить к клемме «минус» аккумулятора.
  6. Вход «+» прибора подключить к черному измерительному щупу.
  7. Красный измерительный щуп соединить с клеммой «+» аккумулятора.

Проверка постоянного тока

Таким образом можно узнать пороговое потребление прибора или устройства, работающего от постоянного напряжения.

Какие бывают амперметры?

Первый тип амперметра – аналоговый. Их ещё называют стрелочными. Вот так они выглядят.

Аналоговый амперметр

Такие амперметры имеют магнитоэлектрическую систему. Они состоят из катушки тонкой проволоки, которая может вращаться между полюсами постоянного магнита. При пропускании тока через катушку, она стремится установиться по полю под действием вращающего момента, величина которого пропорциональна току. В свою очередь повороту катушки препятствует специальная пружина, упругий момент которой пропорционален углу закручивания. При равновесии эти моменты буду равны, и стрелка покажет значение, пропорциональное протекающему через нее току. Иногда, для того, чтобы увеличить предел измерения, параллельно амперметру ставят резистор определенной величины, рассчитанной заранее. Это так называемый шунтирующий резистор – шунт.

Про шунтирующее действие измерительных приборов уже подробно рассказывалось в статье про вольтметр. Там же затрагивалось такое понятие, как входное сопротивление прибора. Так вот, применительно к вольтметру, его входное сопротивление должно быть как можно больше. Это необходимо для того, чтобы прибор не влиял на работу схемы при проведении измерений и выдавал точные результаты.

Применительно к амперметру складывается обратная ситуация. Так как амперметр для проведения измерений включается в разрыв электрической цепи, то необходимо стремиться к тому, чтобы его внутреннее сопротивление протекающему току было минимальным. Грубо говоря, сопротивление между его измерительными щупами должно быт мало. В противном случае, для электрической цепи амперметр будет представлять резистор. А, как известно, чем больше сопротивление резистора, тем меньший ток через него проходит. Таким образом, при включении амперметра в измерительную цепь, мы искусственно понижаем ток в этой цепи. Понятно, что в таком случае, показания амперметра будут некорректные. Но не стоит расстраиваться, так как измерительная техника разрабатывается с учётом всех этих особенностей.

Это лишь ещё один намёк на то, что при обращении с мультиметрами стоит внимательно относиться к выбору режима работы и правильному замеру тех или иных величин. Несоблюдение этих правил может привести к порче прибора.

Аналоговые амперметры до сих пор используются в современном мире. Их плюс таковы, что им не требуется независимое питание для выдачи результатов, так как они используют питание замеряемой цепи. Также они удобны при отображении информации. Думаю, лучше наблюдать за стрелкой, чем за цифрами. На некоторых амперметрах есть винтик корректировки для точного выставления стрелки прибора к нулю. Минусы – это большая инертность, то есть для стрелки прибора нужно какое-то время, чтобы она пришла в устойчивое состояние. Хоть этот недостаток в современных аналоговых приборах проявляется слабо, но он все-таки есть.

Второй тип амперметра – это цифровой амперметр. Он состоит из аналого-цифрового преобразователя (АЦП) и преобразует силу тока в цифровые данные, который потом отображаются на ЖК-дисплее.

Цифровой амперметр

Цифровые амперметры лишены инертности, и выдача результатов измерений зависит от частоты процессора, который выдает результаты на дисплей. В дорогих цифровых амперметрах он может выдать до 1000 и более результатов в секунду. Также цифровые амперметры требуют меньше габаритов для установки, что немаловажно в современной аппаратуре. Минусы – это то, что для измерения им требуется собственный источник питания, который питает все внутренние узлы и микросхемы прибора. Есть, конечно, и такие цифровые амперметры, которые используют питание измеряемой цепи, но они все равно редко используются в виду своей дороговизны.

Амперметры делятся на амперметры для измерения силы тока постоянного напряжения и для измерения силы тока переменного напряжения. Но, допустим, у вас нет амперметра, чтобы измерить силу тока переменного напряжения. Что же тогда делать? Можно собрать очень простую схемку. Выглядит она вот так:

Упрощённая схема стрелочного амперметра переменного тока

Но чтобы не собирать самостоятельно измерительную схему и доводить её до ума, купите себе мультиметр. В хорошем мультиметре есть функции измерения силы тока, как для постоянного, так и для переменного напряжения.

Схема для измерения силы тока выглядит вот так:

Правило измерения тока в электрической цепи

Это означает, что амперметр мы должны подключать последовательно нагрузке.

Для того чтобы правильно измерить силу тока, нам надо знать, какое напряжение вырабатывает источник питания: переменное или постоянное. Если будем замерять силу тока постоянного напряжения, то и амперметр нам нужен для измерения силы тока постоянного напряжения, а если для переменного, то и амперметр нужен соответствующий. В нашем случае нагрузкой может быть любой прибор или схема, которая потребляет ток. Это может быть лампочка, сотовый телефон или даже компьютер.

Измерение силы тока с помощью амперметра.

Давайте рассмотрим на практике, как замерять силу тока с помощью цифрового мультиметра DT-9202A.

Цифровой мультиметр

В красном кружочке у нас буковка «А~» означает, что ставя переключатель на этот участок, мы сможем замерить силу тока переменного напряжения, а ставя переключатель на секцию со значком «А=» (в синем кружке), мы сможем замерять силу тока постоянного напряжения.

Переключатель режимов работы мультиметра

Чтобы измерить силу тока до 200 мА (200m) как переменного, так и постоянного напряжения, нужно поставить щупы такого мультиметра в определенные клеммы:

Клеммы подключения измерительных щупов

Если же мы будем измерять силу тока более чем в 5 Ампер, то я рекомендую вам переставить щуп в другую клемму:

Клемма подключения щупа для замера больших токов

Если даже примерно не знаете, сколько должно потреблять ваше устройство или нагрузка, то всегда ставьте щуп и переключатель на самый большой предел измерения. Тем самым вы сохраните своему прибору жизнь.

На фото снизу я измеряю силу тока, которая кушает лампочка на 12 Вольт. С трансформатора я снимаю переменное напряжение 10 Вольт. Как мы видим, сила тока, потребляемая лампочкой – 1.14 Ампер. Обратите особое внимание, что переключатель мультиметра поставлен на измерение силы тока переменного напряжения (А~).

Замер переменного тока

А вот так мы замеряем постоянный ток, который потребляет автомобильная сирена. Орет она так, что даже уши закладывает .

Замер постоянного тока

Обратите также внимание, так как у нас аккумулятор постоянного напряжения 12 Вольт, то и переключатель режимов мультиметра мы поставили на измерение постоянного тока.

А вот столько у нас кушает лампочка: 1.93 Ампера. Здесь замеряется постоянный ток, который потребляется лампой накаливания от аккумулятора.

  • Никогда не подключайте амперметр в розетку без всякой нагрузки! Тем самым вы просто-напросто спалите прибор. Как уже говорилось, амперметр обладает малым входным сопротивлением.
  • При измерении силы тока не касайтесь голых проводов, а также оголённых частей измерительных щупов. Это исключит электрический удар током. Будьте внимательны со схемой подключения амперметра.

Что такое амперметр, виды, устройство и принцип работы

Для определения значения тока в электрической цепи, применяют специальные приборы — амперметры. Амперметр включается последовательно в исследуемую цепь, и, в силу крайне малого собственного внутреннего сопротивления, данный измерительный прибор не вносит сколь-нибудь существенных изменений в электрические параметры цепи.

Что такое амперметр, виды, устройство и принцип работы

Шкала прибора градуирована в амперах, килоамперах, миллиамперах или микроамперах. Для расширений пределов измерений, амперметр может быть включен в цепь через трансформатор или параллельно шунту, когда лишь малая доля измеряемого тока проходит через прибор, а основной ток цепи течет через шунт.

Механический и электронный амперметр

Сегодня есть два особо популярных типа амперметров — механические амперметры — магнитоэлектрические и электродинамические, и электронные — линейные и трансформаторные.

Устройство магнитоэлектрического амперметра

В классическом магнитоэлектрическом амперметре со стрелкой и градуированной шкалой, через подвижную катушку прибора проходит определенная часть измеряемого тока, обратнопропорциональная сопротивлению катушки, включенной параллельно калиброванному шунту малого сопротивления.

Ток (прямой или выпрямленный) проходящий через катушку приводит к повороту стрелки магнитоэлектрического амперметра, и угол наклона стрелки оказывается пропорционален величине измеряемого тока.

Ток через катушку амперметра создает на ней крутящий момент благодаря взаимодействию собственного магнитного поля с магнитным полем установленного стационарно постоянного магнита. И поскольку стрелка соединена с катушкой-рамкой, она наклоняется на соответствующий угол и указывает значение тока на шкале.

Электродинамический амперметр

Электродинамический амперметр устроен несколько более сложным образом. В нем есть две катушки — одна неподвижная, а вторая — подвижная. Катушки соединены между собой последовательно или параллельно. Когда токи проходят через катушки, то их магнитные поля взаимодействуют, в итоге подвижная катушка, с которой соединена стрелка, отклоняется на угол, пропорциональный величине измеряемого тока.

В приборах, предназначенных для измерения значительных токов, основной ток всегда проходит через шунт малого сопротивления, а катушка соединенная со стрелкой, принимает на себя только малую долю тока, выступая в роли проводящего ответвления от основного пути тока. Соотношения токов через измерительную рамку и через шунт обычно принимаются такими: 1 к 1000, 1 к 100 или 1 к 10.

Часто для измерения значительных токов или при работе с высоковольтными цепями, применяют включение амперметра через измерительный трансформатор тока. В этом случае ток, пропорциональный току в первичной обмотке, измеряется во вторичной обмотке, а шкала градуируется соответственно измеряемому в первичной обмотке току. Вторичная обмотка измерительного трансформатора тока всегда шунтирована резистором, иначе наведенная на ней ЭДС могла бы оказаться опасно высокой.

При включении измерительного трансформатора тока в цепь высокого напряжения, корпус амперметра и вторичную цепь измерительного трансформатора обязательно заземляют, чтобы подстраховаться на случай пробоя изоляции.

На базе трансформаторов тока или датчиков Холла изготавливают амперметры типа «токовые клещи». Применение датчика Холла позволяет измерять постоянный ток, а трансформаторов тока — переменный ток.

Токовые клещи

Клещи на базе трансформатора тока — для измерения переменного тока, — проще в изготовлении и стоят они дешевле. Разъемный магнитопровод представляет собой сердечник трансформатора тока, на котором намотана вторичная обмотка, шунтированная резистором. Первичной обмоткой выступает провод, который клещами обхватывают для измерения тока в нем.

Электронная схема вычисляет в соответствии с законом Ома, исходя из напряжения на шунтирующем резисторе и коэффициента трансформации, ток в исследуемой цепи.

Клещи на базе датчика Холла

Токоизмерительные клещи UNI-T UTM 1202A:

Клещи на базе датчика Холла (для измерения постоянного тока) используют эффект Холла, когда создаваемое постоянным током магнитное поле приводит к появлению пропорциональной ЭДС Холла на схеме датчика.

Преимущество токовых клещей с датчиком Холла в том, что они обладают высоким быстродействием, и позволяют отслеживать кратковременные броски тока.

Мультиметр

Наконец, в простых цифровых мультиметрах с функцией измерения тока, применяется линейная схема измерения с шунтом. Здесь нет подвижной рамки со стрелкой, вместо этого электроника измеряет падение напряжения на шунте известного сопротивления, сравнивает его с эталонным значением, и подсчитывает значение тока. Результат измерения тока отображается на цифровом дисплее.

  • Гальванические элементы — устройство, принцип работы, виды и основные характеристики
  • Практическое применение электролиза
  • Как работают время-токовые характеристики автоматических выключателей и предохранителей

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » В помощь начинающим электрикам

Подписывайтесь на наш канал в Telegram: Домашняя электрика

Поделитесь этой статьей с друзьями:

Оцените статью
TutShema
Добавить комментарий